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Distributed computing systems are widely used for execution of loosely coupled many-task 

applications. There are two important classes of such applications. Bag-of-tasks applications, e.g., 
parameter sweeps or Monte Carlo simulations, represent a set of independent tasks. Workflows, which 
are used for automation of complex computational and data processing pipelines, consist of multiple 
tasks with control or data dependencies. The paper discusses the common problems related to the 
efficient execution of such applications on distributed computing resources and the relevant solutions 
implemented within the Everest platform. 
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1. Many-task applications 

Many-task applications are loosely-coupled parallel applications consisting of potentially 
large number of computational tasks which can be executed more or less independently. There are two 
important classes of such applications widely used in science and technology. Bag-of-tasks or 
embarrassingly parallel applications have no data or control dependencies between the tasks. The 

typical examples are parameter sweeps, Monte Carlo simulations, image rendering. Workflows consist 
of multiple tasks with control or data dependencies between them. Such applications, which are 
commonly represented as directed acyclic graphs (DAG), are used for automation of computational 
and data processing pipelines consisting of multiple steps. While the workflow steps are usually 
executed independently, there is another special class of applications which require some form of 
cooperation between the running tasks. For example, the distributed implementation of the branch-
and-bound method require the exchange of incumbent values between the tasks concurrently 
processing different subtrees. 

While the many-task applications are naturally suited for execution on distributed computing 
resources, there exists a number of challenges related to the efficient execution of such applications 
such as management of a large number of tasks, accounting for dependencies between tasks, 
implementing coordination and data exchange, use of multiple independent computing resources, task 
scheduling, accounting for local resource policies and dealing with failures. The rest of the paper 
provides an overview of solutions to these problems implemented within the Everest platform. 

2. Everest platform 

Everest [1-3] is a web-based distributed computing platform which provides users with tools 

to publish and share computing applications as web services. The platform also manages the execution 
of applications on remote computing resources. Everest implements the PaaS model by providing its 
functionality via remote web and REST interfaces. A single instance of the platform can be accessed 
by many users in order to create, run and share applications with each other.  

Instead of using a dedicated computing infrastructure, Everest performs the execution of 
applications on external resources attached by users. The platform supports integration with 
standalone servers, clusters, grid infrastructures, desktop grids and clouds [3-5]. The developed agent 

runs on a resource and acts as a mediator between it and Everest enabling the platform to submit and 
manage tasks on the resource. The agent performs routine actions related to staging of input files, 
submitting a task, monitoring a task state and collecting the task results.  

Applications running on Everest follow a common model which natively supports many-task 
applications. An application has a number of inputs that constitute a valid request to the application 
and a number of outputs that constitute a result of computation corresponding to some request. Upon 
each request Everest creates a new job consisting of one or more tasks generated by the application 

from the job inputs. The tasks are executed by the platform on computing resources specified by a 
user. The dependencies between the tasks are currently managed internally by the applications. The 
results of completed tasks are passed to the application and are used to produce the job outputs or new 
tasks if needed. The job is completed when all its tasks are completed. The described model is generic 
enough to support all classes of many-task applications described in Section 1. 

Everest implements a number of tools and mechanisms for execution of different types of 
many-task applications described below.  

3. Execution of bag-of-tasks applications 

Everest includes a general-purpose service for execution of bag-of-tasks applications called 
ParameterSweep [6-7]. Parameter sweep applications (PSA) require a large amount of computing 
resources in order to run a large number of similar computations across different combinations of 
parameter values. At the core of the service is a declarative format for describing a parameter sweep 
experiment, which contains parameter definitions and other directives that together define rules for 
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generation of parameter sweep tasks and processing of their results by the service. This approach aims 
to solve a common problem faced by researchers trying to use general-purpose distributed computing 
tools for running PSAs. Namely, a user have to implement custom programs for generating individual 
tasks comprising PSA and processing their results. The use of declarative description enables users to 
minimize or completely avoid such programming work, thus increasing the productivity and 

accessibility of the developed service. While originally aimed at PSAs, the service can be used for 
running arbitrary bag-of-tasks applications. 

The service implements generation of tasks according to the provided description. To support 
the execution of applications with a large number of tasks, the tasks are generated dynamically based 
on the amount of available resource slots. Since tasks often share common input files, the input data 
transfer is optimized by caching of common input files by the Everest agent.    

4. Execution of workflows 

The most natural way of running workflows with Everest is by means of composition of 

existing Everest applications. In this case, the steps of workflow correspond to invocations of  
individual applications. To support automation of repetitive tasks, application composition and 
integration, Everest implements a REST API. It can be used to access Everest applications from any 
programming language that can speak HTTP protocol and parse JSON format. However REST API is 
too low level for most of users, so it is convenient to have ready-to-use client libraries built on top of 
it. For this purpose a Python client library [8] was implemented. 

The Python client library implements the nonblocking semantics similar to the dataflow 

paradigm, which makes it simple to describe workflows without requiring a user to implement the 
boilerplate code dealing with waiting for tasks and passing data between them. This approach also 
implicitly supports parallel execution of independent tasks. Finally, the use of a general-purpose 
programming language instead of a declarative workflow description language provides maximum 
flexibility by enabling users to embed any additional processing logic. 

The workflow driver implemented in Python using the client library can be executed on the 
user machine or published on Everest as a new application. In the latter case, the platform 

automatically passes the credentials for accessing the required applications on behalf of the user 
submitted the workflow to the driver. This enables reuse and sharing of workflows as applications 
among Everest users. 

While the described approach is generally flexible and convenient, it does not allow passing 
the complete task graph to the platform to enable scheduling optimizations. Since the dependencies 
between the tasks are managed externally by the driver program, only the tasks ready to run are 
dynamically submitted to Everest. To overcome this limitation, an experimental general-purpose 
service for execution of workflows similar to the ParameterSweep service described in Section 3 is 

being developed. The service will execute a workflow described in YAML format inside a job 
encapsulating the corresponding DAG and an internal task scheduler. 

5. Raw job mechanism 

In some cases, it is desirable to flexibly manage application tasks during the application 
execution, for example to dynamically add new tasks based on the results of already completed tasks.  
The ParameterSweep service (Section 3) supports only a static set of tasks defined before the 
execution. The Python client library (Section 4) supports dynamic tasks but only on the level of 
invocations of separate Everest applications. To provide a general-purpose solution for such cases, a 

low-level mechanism has been implemented in Everest. This mechanism allows a platform client to 
submit the so called raw job and then manage the execution of tasks within this job via a WebSocket 
interface. This interface is similar to the one provided by the Everest agent and allows the client to 
send commands (e.g., submit or cancel a task) and receive notifications (e.g., change of a task state). 
Initially the raw job contains no tasks, and the client can upload input files, submit new tasks to the 
job, download task results and so on. The raw job should be explicitly cancelled by the client when the 
computations are completed. 
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6. Task coordination 

While in classical bags-of-tasks and workflows the tasks are executed independently, there is a 
special class of applications which require some form of cooperation between the running tasks. A 
typical example is the distributed implementation of the branch-and-bound method for solving 
optimization problems where the tasks are concurrently processing different subtrees [9]. For 

efficiency reasons, it is crucial to exchange the locally found incumbent values between these tasks. 
To support such class of applications, a lightweight coordination mechanism is implemented 

in Everest. This mechanism is based on the notion of shared variables similar to tuple spaces and 
blackboard models. It allows application tasks to write and read values of arbitrary named variables by 
exchanging messages with Everest. The values of variables are stored in the platform and represent an 
analogue of shared memory accessible to all tasks within a job. When the value of a variable is 
updated by some task, the new value is automatically forwarded by Everest to all other tasks. Thus the 
implemented mechanism can also be used as a lightweight publish-subscribe service. The 

implementation details can be found in [9]. 

7. Task scheduling 

The application tasks are executed by Everest on computing resources specified by user. The 
efficiency of application execution, i.e. the execution time, critically depends on the methods used for 
task scheduling [10]. Everest implements a two-level scheduling mechanism that allows to plug-in 
different task scheduling algorithms. The platform-level job scheduler, which is periodically invoked 
with information about current jobs and resource states, fairly distributes the available resource slots 
among the jobs. Each job encapsulates an application-level task scheduler, which is invoked to select 

the tasks for running on provided resources. The default task scheduler implements a simple 
algorithm, which greedily assigns unscheduled tasks to available resources in decreasing order of their 
performance. If there are some jobs with unscheduled tasks left in the end of the scheduling cycle, the 
job scheduler also initiates the allocation of additional slots for on-demand resources, such as grid and 
cloud.  

The described two-level mechanism allows the use of specific task schedulers for different 
types of many-task applications. Two experimental schedulers are developed for bags-of-tasks and 

workflows, which are based on MaxMin and DLS algorithms. These algorithms can produce more 
efficient schedules than the default scheduler, but require the estimates of task execution and data 
transfer times. Currently, these estimates are computed based on the information about already 
completed tasks (waiting time, execution time, data transfer time) which is collected by the platform. 

8. Miscellaneous 

The other features that are essential for efficient execution of many-task applications include 
accounting for local resource policies and automatic recovery of failed tasks. 

The limit on the maximum number of jobs per user imposed by an HPC cluster administrators 

may not allow to fully utilize the resource when running a single cluster job per Everest task. An 
advanced adapter for Slurm cluster manager has been developed which allows to solve this problem 
by packing multiple Everest tasks in a single cluster job.  

When dealing with failed tasks, the platform distinguishes between the critical (non-zero exit 
code) and recoverable (resource is disconnected, data download/upload error) faults. In the latter case, 
the task is automatically retried multiple times, and the resources with many failures are blacklisted. 
The application developer can optionally enable task retries after a critical error. To account for 

temporary network failures, which can happen between Everest and resources, the tasks running on the 
disconnected resource are not rescheduled immediately to avoid wasting compute time. 
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10. Conclusion 

The paper presented ready-to-use solutions for efficient execution of many-task applications, 

such as bag-of-tasks and workflows, in distributed computing environments implemented within the 
Everest platform. A distinctive feature of the presented approach is the availability of these solutions 
on the principles of cloud computing and PaaS model. The public instance of the platform [1] is 
available online for all interested users. Future work will focus on improving and extending the 
presented functionality, including the workflow execution service and application-level schedulers. 
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