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Porting applications to GPU-based heterogeneous systems is far from a trivial task. Those systems 

offer exceptional performance potential, but require specific knowledge to utilize correctly. The basic 
tools do not offer the level of abstraction to make GPU easy to use for a non-specialist. Many external 
tools aimed to correct that problem. In this paper we categorize them in broad terms, compare them to 
the use of the base GPGPU technologies, and discuss their future potential. 
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1. Introduction 

Despite the ever-increasing demand for computational power, the way forward is unclear. The 
age of rapidly increasing CPU frequency has come and gone. Current processor industry is focused on 
increasing the parallel capabilities of CPUs, as it is the only currently viable way to increase overall 
performance of the system. Unfortunately, multi-core CPUs do not give an automatic performance 

boost even in CPU-intensive applications as multi-threading requires applications to be designed from 
the ground up to take advantage of it.  

Difficulties of parallel programming are further magnified in case of General Purpose GPU 
technologies. Since GPU is a separate computational device it requires the data to be transferred to and 
from it. Even if the system supports virtual coherent memory, physical transfer of data still has to be 
done. This process can take more time than the actual calculation and so is ripe for optimization 
opportunities. The methods of projecting the workload onto the GPU architecture are also far from 
trivial or obvious. As the hardware details of each GPU are different so is the optimal thread grid 

configuration for it. 
The nuances of heterogeneous computation technologies are many, but when it comes to the 

practical application, the goal is usually set simply as “we have the algorithm, and we want it to run on 
GPUs”. Unfortunately, the task of porting said algorithm frequently falls on the shoulders of those 
without deep knowledge of GPGPU technology. It is no wonder then, that many look for a way to 
automate the porting process instead of delving deep into the details of GPU architecture. 
Unfortunately, there are many factors influencing the resulting performance of a GPGPU application, 

many of which present big problems for automated optimization.  
In this paper, we present an overview of existing approaches to porting an algorithm to 

heterogeneous systems, and discuss their specifics. 

2. The parallel ways 

Despite compilers getting more sophisticated each year, algorithm parallelization is frequently 
left to the programmer. Unfortunately, it is natural for humans to think sequentially. Writing parallel 
applications requires additional knowledge and expertise, hence why many prefer writing sequential 
code. This creates the need for tools and methods for parallelizing such legacy codebases.  

The problem becomes much bigger when GPGPU technologies are involved, considering their 
relative recent development. First, those applications have to be massively parallel to see the most 
performance benefits, owing to the architecture of graphical accelerators. Second, being a separate 
computing device, with no easy access to system RAM-memory, processed data needs to be 
transferred to the GPU over relatively slow PCIe bus. There are much faster inter-GPU interfaces, 
such as NVLink, but it only speeds up the data exchange between GPUs, further showcasing the 
RAM-GPU communication problem. And last, but definitely not the smallest problem is the big 

variance of application performance depending on the GPU. There are many different architectures, 
manufacturers, generations, and price-ranges for GPUs, all with different exclusive features and level 
of support for various GPGPU technologies. One example is Nvidia CUDA technology, which only 
supports GPUs of that manufacturer, compared to OpenCL, which theoretically supports every kind of 
computational device, but that support has to be maintained by the manufacturer of that device. This 
leads to drastically different performance levels on supposedly comparable GPUs. 

Generally, the parallelization process itself can be broken down in 3 stages – Analysis, 
Scheduling, Code Modification. At Analysis stage we group parts of the code into tasks and do 

dependency analysis to determine which tasks can be executed in parallel. Then, during Scheduling 
stage we create execution schedules to optimize performance and ensure that data dependencies are 
not broken. And finally, we modify the code to implement the chosen schedule. 

GPGPU technologies present additional factors to consider during each step. Most of them 
require the code intended to be executed on GPU to be separated into separate blocks, functions, or 
even files. This makes analysis stage easier, as every task intended for GPU has to be separated, but 
frequently makes code modification and management harder. The need for explicit data transfers also 

usually translates into explicit language constructs, requiring the programmer to manage different 
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buffers and memory spaces, both on CPU and GPU. Because data transfer takes comparatively long 
time and must be completed before task execution can begin, it forces the programmer to carefully 
consider what data must be transferred and when. And finally, before executing each task a GPU 
execution configuration must be explicitly defined. This means that programmer must know in 
advance how the data and operations will be mapped onto the available GPU resources. It seems that 

there is no way to predict which configuration will offer the best results without extensive testing. 
Overall, the main issue with GPGPU technologies for programmers is the lack of high-level 

abstractions offered by the basic API, forcing them to research many low-level hardware details. This 
leads to many parties trying to solve the problem by either providing intermediary libraries or creating 
fully automatic systems, while others prefer the greater flexibility and full control of manual porting. 
Let us discuss benefits and drawbacks of each approach. 

2.1. Manual 

The most basic and direct way to port an application to GPU is to manually re-write it using 
the chosen framework’s API. The two most popular choices currently are CUDA [1] and OpenCL [2]. 
Both feature similar programming model and require separating GPU code into separate “kernels”. 
Each kernel can then be executed with variable configuration. 

This way offers the best control over execution flow. Programmer can control when and how 

kernels will be executed and what data will be transferred where. To make best use of this approach, 
one must have at least some understanding and experience with GPGPU technologies and hardware. 
Unfortunately, it is not always possible to have a required specialist on hand, as native APIs of both 
CUDA and OpenCL are C-based. In the end, this approach has the best potential for performance, but 
is the most labor-intensive. 

2.2. Semi-automatic  

Slightly easier to the non-specialist is a semi-automatic approach that relies on first, second or 
third-party libraries and extensions to the base technology. Such resources can enable the use of the 
technology with different programming language (ClojureCUDA, PGI CUDA FORTRAN, JoCL, 
ArrayFire, FortranCL) or automate the optimization and execution of some typical tasks in various 
fields (BarraCUDA, ASL).  

This way, the programmer doesn’t need to create all GPU algorithms himself, using the ones 

already proven, and can use language he is more familiar with. Depending on the library, it is 
sometime possible to create an application without ever using the native API, as some of them provide 
full wrappers and hide the initialization and configuration from the user. This, of course, can limit 
potential for optimization, and require a modification to the library itself. In contrast with the native 
API, which is supported by the manufacturer, third-party libraries cannot guarantee to be maintained 
in the future, and the internet is already full of such dead projects. Therefore, this approach presents a 
compromise between ease of immediate use and risk of future complications. 

2.3. Automatic 

Ideally, the programmer wouldn’t need to know about the hardware and implementation 
details and could focus on a higher view of the algorithm. To that end many groups elected to create 
automated systems, usually, including special compilers or source-to-source code processors, that 
would transform the originally sequential code into fully parallel one.  

All stages of the parallelization process could be, in theory, automated, and there are some 
systems that try to do exactly that. For purely CPU-based code, those systems are well-known and 
display good performance when used correctly. Tools such as Intel C++ Compiler [3] or Portland 
Group Fortran solution [4] can automatically unroll loops and perform dataflow analysis and manage 
parallel compiler directives. That said, the effectiveness of such automated approach is highly varies 
with different code complexity and inter-dependency. 

Things are even less clear when it comes to automated GPU porting. Most solutions available 
today can be better categorized as semi-automatic, as they still require manual code modification, 

albeit much less extensive. One of the few more hands-off tools is OpenMP [5], which can be made to 
offload some tasks to GPU using annotations in the code. Another example is Par4All [6], an 
automatic parallelizing and optimizing compiler. It does source-to-source compilation and can target 
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different hardware for optimization, including GPU. Unfortunately, the project has been dormant since 
2012 and shows no signs of progress since. 

3. Hardware-specific optimization 

One additional problem those trying to learn GPU parallelization will encounter is variable 
effectiveness of different optimization mechanisms on different hardware. As an example,  look at a 

simple task of matrix-on-vector multiplication. Even though it can be very easily parallelized, there are 
many factors that can further increase or hinder performance. Those factors are described in detail in 
[7], but related test results are presented in Figure 1. 

As seen from there, performance increase derived from different optimization techniques 
varies wildly not only between devices of the same manufacturer, but also between programming 
languages. One specific issue we need to point out is the optimal thread block size. Correctly utilizing 
this optimization mechanism gives the single biggest boost to performance, but the optimal 
configuration for each device is very hard to predict. Additionally, incorrect use of these mechanisms 

can lead to performance even lower than that of completely non-optimized version. 

 

Figure 1. Performance increase in percent’s compared to the non-optimized GPU implementation on the 

respective hardware 

4. Conclusion 

Overall, there is no true fully automatic GPU parallelization tool currently available, and it is 
unclear if there will be in the future. The two main difficulties such projects face are correct 
application of fine-grained parallelism and accurate dependency analysis. 

On the other hand, there are perhaps too many different libraries offering to abstract away the 
details of GPU usage. They offer different amount of flexibility and control over executions, so most 
teams will be able to find one that suits their needs. Unfortunately, it is hard to say which tools will 

continue to be developed and which will be abandoned in the future. 
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Manual approach offers the best potential performance, while requiring specialized knowledge 
and being the most labor-intensive. Thankfully most GPGPU technologies have the same base 
architecture so skills from one can usually be transferred to another. 

It is impossible to tell which approach is the best, as it will be dependent on expertise and 
resources available to the team, but it is safe to say that semi-automatic tools are generally faster to 

learn and understanding of manual approach will be more useful in the long perspective. 
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