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Abstract. The paper discusses the development of hybrid chatbot sys-
tem combining Q& A and knowledgebase approaches. The machine learn-
ing methods are used for answering question & answer pairs. The knowl-
edgebase processing uses a metagraph model which requires hybridiza-
tion of two approaches. The proposed approach of Q&A and knowledge-
base hybridization is discussed.
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1 Introduction

Nowadays chatbot systems became more and more popular. It is almost impos-
sible to meet the company’s website without chatbot. More and more efforts are
being made to improve the quality of chatbots [1]. But the list of functions that
chatbots can successfully perform is still restricted. Consider the most common
of these functions.

The first function (function I) is question answering (Q&A). The most com-
mon case of Q&A is F.A.Q. (frequently asked questions). This is a list of question
and answer pairs. If the user asks a question similar to the question in the list,
then the corresponding answer from the list is returned to the user. There are
many services implementing this function, for example [2], and also many re-
search papers, for example [3].

The function IT that is very close to function I is answering common phrases.
A list of pairs is also used as the data model, differing in that in this case, there
are no question and answer pairs but stimulus and response pairs. If the user
sends phrase similar to stimulus in the list, then the corresponding response
from the list is returned to the user. This function is implemented for example
in chatterbot framework [4]. This function is not business-oriented but aimed to
make chatbot system more human-like.

The function IIT is dialog scripts. Usually, dialog script is created in the form
of the graph. The objective of chatbot is to route the user from the initial to the
terminal vertex of the graph. The vertex of the graph is associated with some
action. The action may be asking and answering user, calling web-service, etc.



Usually, the data from user input is parsed and stored in variables. These vari-
ables are substituted for the answering templates. There are also many services
implementing this function, for example, flowxo [5] and rebotify [6].

The function IV is knowledgebase answering. In this case, dialog scripts are
created dynamically based on user questions and data stored in the knowledge-
base. The history of questions and answers is stored in the session. As far as
we know, information systems implementing this function are in experimental
phase.

The chatbot implementing function IV is the most general case including
functions I, IT and III. Indeed, if we can create scripts dynamically, it is unneces-
sary to draw static dialog script graph as in function III. The functions I and IT
may also be replaced with dynamical generation on the basis of knowledgebase.

From the business user point of view, the function IV is the most significant.
Most users can provide price lists as a knowledgebase for questions answering.
But function I also should not be abandoned because most users can also provide
exact Q&A pairs.

The main goal of this article is to discuss the development of hybrid chatbot
system implementing functions I for Q& A pairs answering and function IV for
price list answering.

2 The hybrid chatbot system structure

The hybrid chatbot system structure is represented in Fig. 1.
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Fig. 1. The hybrid chatbot system structure.

First, the question is preprocessed using the question preprocessing module.
The results of the preprocessing are passed to the Q&A and knowledgebase



processing modules that are executed simultaneously. Then the hybridization
and answer generation module integrates the answers of two processing modules
and returns the final answer to the user. Each module uses its own storage, and
all modules have access to the user session storage. The storages are not shown
in Fig. 1 in order not to confuse visualization of the figure.

The system is implemented in Python 3. The MongoDB database is used as
storage backend. The mongoengine document-object mapper is used to simplify
the work with MongoDB.

The principles of the operation of the modules will be discussed in details in
the following sections of the article.

3 The question preprocessing module

The question preprocessing module prepares question text for Q&A and knowl-
edgebase processing. The main library used in this module is NLTK. The Q&A
preprocessing includes:

— tokenization;
— lemmatization;
— vectorization for TF-IDF and Doc2Vec [7] processing.

The vectorized question is passed to the Q&A processing module.

The main preprocessing task for knowledgebase processing module is concept
recognition. The idea of concept recognition is based on NLTK sentence parsing.
If all the words in the concept are in the same subtree of the parse tree, then
the concept is considered to be recognized in the sentence. The set of recognized
concepts is passed to the knowledgebase processing module.

4 The Q&A processing module

The input value of Q&A processing module is user question that is vectorized
using TF-IDF and Doc2Vec processing. The module tries to find the closest
question in the Q&A pairs list. Experiments were carried out with TF-IDF and
Doc2Vec processing and with cosine and Euclidean distances.

Technically, there are two approaches to solve this task. The first one is to
create a huge matrix T(N x M), where N is an amount of the questions in the
database, M is the length of the dictionary. Since most of the questions won’t
contain that many words, the matrix will be too sparse. The advantage of this
approach is its ability to use highly efficient linear algebra libraries. But there
is also a very serious practical disadvantage: each time administrator adds new
questions we need to check whether or not there are new words in them. And if
there are, we need to rebuild the whole matrix.

The second approach is way agiler. Since we use the resulting vectors to
compare between each others using metrics like cosine or Euclidean - we don’t
need to compare zeroes, so we don’t need to vectorize all the questions in one



space (with same dimensions). Actually we could create small distinct spaces for
each question in the database. Each vector space would have a size of |g; U g4/,
where ¢; is a question from the database, and ¢, is the asked question. In this
case, we don’t need to create any matrices; we just compare asked question with
the database questions one at a time. If the new questions are being added to
the database, the only thing needed is to adjust IDF weights of the given words,
no database transformation needed at all.

There are a lot of algorithm metrics which are matter for the practical
use of the system such as accuracy, train and evaluation time. Below one can
see experiments carried out with a goal to maximize accuracy and minimize
train/evaluation time. Corpora used in the experiments was obtained from the
Wikipedia Monolingual Corpora [8] project page. It contains about 4,5 millions
of English Wikipedia articles. The Q&A dataset we’ve used contained not just
question-answer pairs, but also some variations of the same questions. We've
divided these question variants as 70/30 between the train and test sets.
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Fig. 3. Train/evaluation time vs corpora

Fig. 2. Accuracy vs corpora size. .
size.

Corpora Size (sentences)|Train Accuracy|Test Accuracy|Train Time (sec.)|Evaluation Time (sec.)
0 100 1.0 0.644 0.458 43.905
1 1000 1.0 0.663 2.041 43.462
2 10000 1.0 0.681 12.801 43.844
3 100000 1.0 0.675 83.207 38.517

Table 1. Q&A experiments results.




As one can see in Fig. 2 and 3 and Table 1 the optimal corpora size for given
dataset is 10000 sentences. The later enlargement makes the algorithm slower
and doesn’t improve accuracy.

The results of the experiments showed that the best quality is achieved when
using cosine distance and ensemble model with TF-IDF (weight is 0.8) and
Doc2Vec (weight is 0.2).

The Q&A processing module returns the corresponding answer for the closest
question and the classifier confidence level.

5 The knowledgebase processing module

5.1 Why metagraph approach

The main idea of this module is answering price list questions. We assume that
typical representation for price list is a denormalized table. The rows of the table
are objects, and the columns of the table are attributes.

The class of machine learning algorithms that is most relevant for this task is
recurrent neural networks (RNNs). LSTM [9] and Seq2Seq [10] neural networks
topologies are actively used in language processing and machine translation.
Now RNN-based non-factoid question answering neural models are under active
research, for example, Neural Generative Question Answering (GenQA) [11] and
attention-based LSTM [12] models. But these models also assume that there is
a trainset of questions and answers which is not a case for price list questions
answering.

It is especially important to note the DeepPavlov library [13] which combines
several approaches and allows to create goal-oriented chatbots. It is possible that
in the future this library will allow to abandon the knowledgebase processing
module. But this library is now in a really early Alpha release and also heavily
dependent on trainsets.

Thus, although machine learning algorithms are well suited for Q&A pro-
cessing, they are not suitable enough for price list questions answering.

Therefore, to solve price list questions answering task, we propose to use
methods based on knowledge and its processing.

Though the denormalized table is a good logical data model for knowledge
representation, it is not good enough as a physical model because it does not
allow to store and process data effectively. The first experiments were carried
out with RDF storages. But the main problem of RDF model is poor N-ary
relationship representation [14]. According to [15] the metagraph model can
solve this issue. Therefore the metagraph model is used as a physical data model
for a knowledgebase.

5.2 The brief description of the metagraph approach

A metagraph is a kind of complex graph model aimed for hierarchical graph
description. The metagraph model simplifies N-ary relationship representation
and complex contexts description.



According to [15] the metagraph is described as follows: MG = (V, MV, E),
where M G — metagraph; V — set of metagraph vertices; MV — set of metagraph
metavertices; F — set of metagraph edges.

The metagraph vertex is described by set of attributes: v; = {atrg},v; € V,
where v; — metagraph vertex and atry — attribute.

The metagraph edge is described by set of attributes, the source and desti-
nation vertices (or metavertices): e; = (vs,vg, {atry}), e; € E, where e; — meta-
graph edge; vg — source vertex (metavertex) of the edge; vg — destination vertex
(metavertex) of the edge; atry — attribute.

The metagraph fragment is defined as MGy = {ev;},ev; € (VUEUMYV),
where MGy — metagraph fragment; ev; — an element that belongs to the union
of vertices, edges and metavertices.

The metagraph metavertex: mv; = ({atry}, MGr), mv; € MV, where mv; —
metagraph metavertex; atry — attribute, M Gy — metagraph fragment.

The example of metagraph representation is given in Fig. 4.

Fig. 4. The example of metagraph representation.

The example contains three metavertices: mwvi, mvs, and mvs. Metavertex
muy contains vertices v1, v2, v3 and connecting them edges ey, es, es. Metaver-
tex mus contains vertices vy, vs and connecting them edge eg. Edges eq4, €5 are
examples of edges connecting vertices vo—vy4 and vs-vs are contained in different
metavertices mv; and mvy. Edge e7 is an example of edge connecting metaver-
tices mv; and mus. Edge eg is an example of the edge connecting vertex v, and
metavertex muvy. Metavertex muvs contains metavertex musy, vertices vo, v3 and
edge ey from metavertex mwv; and also edges ey, e5, eg showing emergent nature
of metagraph structure.

The metagraph itself is not more than a complex data structure. To process
and transform metagraph data the metagraph agents are used.



The metagraph agent uses rule-based approach: ag? = (MG, R, AG°T), R =
{ri},ri + MG; — OPME where ag® — metagraph rule agent; MG — working
metagraph, a metagraph on the basis of which the rules of agent are performed;
R — set of rules 7;; AGST — start condition (metagraph fragment for start rule
check or start rule); M G; — a metagraph fragment on the basis of which the rule
is performed; OPME — set of actions performed on metagraph.

The antecedent of a rule is a condition over metagraph fragment, the conse-
quent of rule is a set of actions performed on metagraph. Rules can be divided
into open and closed. If the agent contains only open rules it is called open agent.
If the agent contains only closed rules it is called closed agent.

The consequent of an open rule is not permitted to change metagraph frag-
ment occurring in rule antecedent. In this case, the input and output metagraph
fragments may be separated. The open rule is similar to the template that gen-
erates the output metagraph based on the input metagraph.

The consequent of closed rule is permitted to change metagraph fragment oc-
curring in rule antecedent. The metagraph fragment changing in rule consequent
cause to trigger the antecedents of other rules bound to the same metagraph frag-
ment. But incorrectly designed closed rules system can cause an infinite loop of
metagraph rule agent.

Thus metagraph agent can generate the output metagraph based on the input
metagraph (using open rules) or can modify the single metagraph (using closed
rules).

The distinguishing feature of the metagraph agent is its homoiconicity which
means that it can be a data structure for itself. This is due to the fact that
according to definition metagraph agent may be represented as a set of meta-
graph fragments and this set can be combined in a single metagraph. Thus, the
metagraph agent can change the structure of other metagraph agents.

The example of metagraph agent is shown in Fig. 5. The metagraph agent
“metagraph rule agent 1”7 is represented as metagraph metavertex. According
to definition, it is bound to the working metagraph MG, which is shown with
edge ey.

The metagraph agent description contains inner metavertices corresponds
to agent rules (rule 1 ... rule N). Each rule metavertex contains antecedent
and consequent inner vertices. In given example mwve metavertex bound with
antecedent which is shown with edge es and mwvs metavertex bound with con-
sequent which is shown with edge e3. Antecedent conditions and consequent
actions are defined in form of attributes bound to antecedent and consequent
corresponding vertices.

The start condition is given in form of attribute “start=true”. If the start
condition is defined as a start metagraph fragment then the edge bound start
metagraph fragment to agent metavertex (edge e; in given example) is annotated
with attribute “start=true”. If the start condition is defined as a start rule then
the rule metavertex is annotated with attribute “start=true” (rule 1 in given
example), Fig. 5 shows both cases corresponding to the start metagraph fragment
and to the start rule.
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Fig. 5. The example of the metagraph agent.

Thus, the metagraph approach is a good basis for complex graph structures
and their transformations representation. Now we can describe the knowledge-
base in terms of metagraph approach.

5.3 The knowledgebase representation using the metagraph
approach

The knowledgebase fragment in the form of metagraph is represented in Fig. 6.
This example focuses on sales of office supplies. The price list is a table, each
line of which contains the goods, and each column contains the characteristic of
the goods.
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Fig. 6. The knowledgebase fragment in the form of metagraph.

The knowledgebase processing module solves two main tasks: questions an-
swering and an active dialogue with the user. Each solution is represented using
metagraph rule agent.

The questions answering agent uses the following rules:

— If the user’s question contains concepts that match the data in the table,
the corresponding column name is searched for each of these concepts, and
the pair ”column name: data” is saved in the user’s session. If the session
contained a pair corresponding to a column name, then this pair is deleted
before insertion of a new pair.

— If the user’s question contains concepts that correspond to the column name,
a set of values for that column are displayed based on the session data. For
example, if the user’s question contains the concept of ” products”, the system
will display a list of products in response: ”red pencil”, ”green pencil”. But
if the session contains a pair {product: green pencil}, the user will be given
a message that he orders green pencil.

An active dialogue agent is used to help the user choose a product. Then the
main goal of active dialogue is to filter table in order to choose a single row. An
active dialogue agent uses the following rules:

— After processing the user’s question and saving the recognized concepts in
the session, table rows are filtered based on the session data, and the number
of filtered rows is estimated.

— If the single row is found, the goal is considered to be completed, and the
user is shown information about target columns of the single row.

— If more than one row is found, then the system implements an active dialogue
with the user and tries to complete the goal by asking auxiliary questions.
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For this, a column with minimal diversity is defined, that is, it determines
which column contains the minimum number of possible concepts, taking
into account the filter based on the data of the current session. The active
dialog will continue until the goal is completed, that is until the single row
of the table is found.

— If the user specifies an incompatible set of concepts during the dialog process
that leads to zero rows as a result of the filtering, a message is displayed indi-
cating that no data has been found for incompatible set of session parameters
and the user session is cleared.

The described process can be considered as a special kind of forward chain-
ing based on table data. The usage of metagraph approach for knowledgebase
representation allows using metavertices both as data elements used for question
answering and information elements used for active dialog implementation.

It should be noted that it is not correct to talk about the accuracy of the
knowledgebase processing module, because it does not use machine learning
algorithms. The correctness of the module operation depends entirely on the
accuracy of concept recognition.

6 Hybridization and answer generation module

Actually, the Q&A and knowledgebase processing modules are two different chat-
bot systems, and we need to implement their seamless integration. The main
idea of integration is that the Q&A processing module is aimed to answer gen-
eral purpose question while the knowledgebase processing module is aimed to
answer specific questions based on knowledgebase data.

After the preprocessing phase, the Q&A and knowledgebase processing mod-
ules are called simultaneously in order to reduce the response time of the system.
However, when analyzing module answers, the Q&A module responsible for gen-
eral purpose questions has a higher priority.

If the text of the question is found in Q& A pairs with a high degree of confor-
mity, then we recognize that question is general purpose and the corresponding
answer from the Q&A processing module is returned to the user. A high de-
gree of conformity means that the confidence level of the Q& A classifier exceeds
the threshold. The value of confidence level threshold based on the results of
experiments is about 85%.

If the confidence level of the Q&A classifier does not exceed the threshold,
then we apologize that question is knowledgebase specific, and the answer from
the knowledgebase processing module should be returned to the user. If the set
of recognized concepts passed to the knowledgebase processing module is empty
or the knowledgebase processing module returned empty answer then standard
answer ”Please, clarify your question” is returned to the user.

7 Experiments - dialog example

In this section we consider simple dialog example:
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User: [ want to buy a green beautiful pencil.

Comment: The concept 'green pencil’ is recognized and stored in the session
because words 'green’ and ’'pencil’ are in the same subtree of the NLTK parse
tree. The knowledgebase contains several rows with this concept. The system
tries to offer the brand for the selected product.

Bot: We have green pencils of the following brands: "Crayola’ and 'Kores’.

User: What are the advantages of Crayola pencils?

Comment: The concept 'Crayola’ is recognized. But the confidence level of
the Q&A classifier exceeds the threshold, and the corresponding answer from
the Q&A processing module is returned to the user.

Bot: The advantages of Crayola pencils ... (answer from Q&A).

User: Then I want to buy a Crayola pencil.

Comment: The concept 'Crayola’ is recognized and stored in the session.
The confidence level of the Q&A classifier does not exceed the threshold. The
knowledgebase contains only one row corresponding to the session concepts.
Then the value of the target column (price) is returned to the user.

Bot: It costs 120 price units.

8 Conclusion

The main result of our development is the chatbot system that integrates Q&A
and knowledgebase processing functions.

The developed system can be considered as an automated consultant who
provides information about the goods, answers detailed questions about the
characteristics of the goods and helps to choose the goods.

The Q&A processing module uses machine learning methods while the knowl-
edgebase processing module uses metagraph approach.

The Q&A processing module finding the closest question in the Q&A pairs
list. The best quality is achieved when using cosine distance and ensemble model
with TF-IDF and Doc2Vec.

The knowledgebase processing module uses metagraph model for a denormal-
ized table data storage. The metagraph rule agents are used for knowledgebase
questions answering and an active dialogue with the user.

As the future work, we plan to improve the quality of Q&A processing and
add more question answering features to the knowledgebase processing module.
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