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Abstract 
This paper presents current work in integrating cognitive 
agents, trained to detect advanced persistent threats (APTs), 
into cybersecurity operations centers (CSOCs). After intro-
ducing APTs, the cognitive APT detection model, and the 
training of the agents, it overviews how the collection agents 
required to gather evidence for cognitive agents are selected, 
how abductive triggers are generated using collected data and 
threat intelligence, how the Collection Manager software is 
used to integrate cognitive agents with selected collection 
agents, and how results of searches are added to the 
knowledge base as evidence. These concepts are illustrated 
with an example of how the system uses these components to 
search for evidence required to detect an APT attack. 

Introduction 
 The science and art of intrusion detection and prevention 
has evolved over the last decade, largely due to the shift 
from cyber vandals and pranksters to multi-billion-dollar 
criminal enterprises and state-sponsored APT intrusion 
methodology (Zimmerman, 2014). What was once the realm 
of criminals with a small collection of easily discovered au-
tomated tools is now ruled by well-funded and highly so-
phisticated sets of hackers carefully orchestrating intrusions 
as a means to advance their criminal enterprise or intelli-
gence collection mission.  
 State-sponsored intrusion sets such as the People’s Re-
public of China’s (PRC) APT1 have demonstrated that or-
ganization, funding, and lack of consequences can be more 
effective than use of sophisticated intrusion tools (Mandiant, 
2013). An APT is an adversary that leverages superior re-
sources, knowledge, and tactics to achieve its goals through 
computer network exploitation and are notorious for their 
persistence and ability to adapt to efforts of network defend-
ers in order to gain persistent access to victim networks 
(Mandiant 2013). APT groups have become a major area of 

security research over the past several years as threat intel-
ligence companies began tracking their specific tools, tech-
niques, and procedures (TTPs), attributing those TTPs to 
threat actors, and publishing reports on the groups. 
FireEye/Mandiant has published reports on 30 APT groups 
since 2013, naming them simply APT1 through APT30 
(FireEye 2015). APT1, the most infamous of the APT 
groups, was attributed to Unit 61398 of China’s People’s 
Liberation Army (Mandiant 2013). 
 The responsibility of a CSOC’s analysts is to monitor 
alerts and log information from available sources, each hav-
ing differing levels of credibility, and use them to make de-
cisions about the presence or absence of intrusion activity. 
However, modern detection technologies are error-prone, 
because log information can be ambiguous. As a result, each 
alert must be carefully examined and investigated by a hu-
man analyst (Zimmerman 2014). In a large enterprise, thou-
sands of alerts can be reported daily, and most organizations 
report they are able to investigate less than 50 in a typical 
work week (Ponemon Institute 2017), leaving most alerts 
uninvestigated and increasing risk to the enterprise. Improv-
ing the efficiency and accuracy of analysis and threat intel-
ligence tasks could drastically lower the cost of running a 
CSOC and reduce risk to the organization. 
 One approach to increasing CSOC efficiency is to employ 
collections of agile cognitive assistants, able to capture and 
automatically apply the expertise of cybersecurity analysts, 
to automate detection of APTs and other sophisticated 
threats (Meckl et al. 2017). These cognitive agents use ab-
ductive, deductive, and inductive reasoning to learn from 
cybersecurity experts how to autonomously respond to 
CSOC alerts, capture digital evidence related to the alert, 
and analyze it to detect threats. 
 A significant architectural challenge to this approach is 
integration of the agents into real-world CSOCs, which have 
a wide variety of security infrastructure. There are thou-
sands of commercial and open source security products 
available for CSOC managers to choose from. For this ap-
proach to be successful, cognitive agents must be able to 
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seamlessly interact with security sensors in place in the 
CSOC with minimal re-architecture of the system. This pa-
per builds on previous research to present current results on 
researching the automation of CSOCs with agile cognitive 
assistants. Specifically, we focus on how our agents interact 
with real-world security infrastructure to detect attacks. 
 We start with an overview of our approach to teaching a 
learning agent shell how to detect APTs. Then, we discuss 
how the search/collection agents required to gather evidence 
for cognitive agents are selected, how abductive triggers are 
generated using collected data and threat intelligence, how 
the Collection Manager software is used to integrate cogni-
tive agents with selected search/collection agents, and how 
their results are added to the knowledge base as evidence.  

APT Detection: Teaching and Learning 
 For many years we have researched the Disciple theory, 
methodology, and tools for the development of knowledge-
based cognitive assistants that: (1) learn complex problem-
solving expertise directly from subject matter experts; (2) 
support experts and non-experts in problem solving; and (3) 
teach their problem-solving expertise to students (Tecuci 
1988; 1998; Boicu et al. 2000; Tecuci et al. 2005; 2016a).  
 In the following we summarize how the Disciple-EBR 
learning agent shell is taught to detect APT intrusions. In 
essence, an expert cybersecurity analyst teaches Disciple-
EBR in a way that is similar to how the expert would teach 
a student or an apprentice, by explaining APT detection ex-
amples to it. The agent learns general rules from these ex-
amples and applies them to new situations. Then the expert 
critiques the attempted detections by the agent, and the agent 
improves its learned rules and its ontology, to more accu-
rately simulate the detection activity of the expert. Fig.1 is 
an abstract illustration of this process. 
 First, the expert specifies an event of interest, or trigger 
(T1 in Fig.1), that should alert the agent of a potential intru-
sion, for example, an alert generated by the BRO IDS 
(Paxson, 1999) in the case of an intrusion by the Auriga mal-
ware of APT1. The problem is that such an alert may be 
generated by BRO also in cases when there is no intrusion, 
called false positives. 
 Thus, once such an event is generated by BRO in a real 
situation, the expert’s question is: What hypotheses would 
explain it? Therefore, the next step in the teaching process 
is to specify the abductive steps of generating alternative hy-
potheses that may explain this alert, as abstractly shown in 
the left part of Fig.1. Some of these hypotheses are APT1 
intrusion hypotheses (e.g., H1), but others are false positive 
hypotheses (e.g., Hq).  From these abductive reasoning 
steps, the agent will learn trigger, indicator, and question 
rules. These rules will enable the agent to automatically gen-

erate alternative hypotheses that could explain similar trig-
gers, as will be discussed later and illustrated in Fig.6. 
 Once the hypotheses that can explain the trigger are gen-
erated, the expert would need to assess which of them is 
most likely, and thus to determine whether there is an intru-
sion or not. For this, however, the expert would need more 
evidence. The expert will put each hypothesis to work to 
guide him/her in the process of collecting this evidence, as 
abstractly illustrated in the right-hand side of Fig.1. In par-
ticular, the expert will decompose H1 into simpler and sim-
pler hypotheses, down to the level of hypotheses that show 
very clearly what evidence is needed to prove them. For ex-
ample, H1 would be true if 𝐻"" and … and 𝐻#" would be true. 
Then, to determine whether 𝐻#" is true, one would need to 
invoke a search procedure 𝑆#% that may return evidence 𝐸#%, 
if present. If 𝐸#% is found, its credibility and relevance deter-
mine the probability of 𝐻#" (Tecuci et al. 2016b). Once the 
probabilities of the sub-hypotheses are assessed, the proba-
bilities of the upper-level hypotheses are determined, and 
one may conclude whether there is an intrusion or not. 
 From a decomposition tree like that in Fig.1, the agent 
will learn both hypothesis analysis rules and collection 
rules. These rules will enable the agent to automatically de-
compose similar hypotheses and search for evidence, as will 
be discussed later and illustrated in Fig.7. 
 Each of the rules mentioned above is initially partially 
learned as an ontology-based generalization of one example 
and its explanation. They are then used in reasoning to dis-
cover additional positive and negative examples and are fur-
ther incrementally refined based on these new examples and 
their explanations. The Disciple approach is based on meth-
ods for integrating machine learning with knowledge acqui-
sition (Tecuci and Kodratoff 1995), and on multi-strategy 
learning (Tecuci, 1988; 1993; Tecuci et al. 2016a). 
 Agent teaching and learning is a continuous process re-
sulting in the customization of Disciple-EBR into an agent 
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that not only has reasoning modules for all the phases of the 
APT1 intrusion detection process, but also a knowledge 
base (KB) with a developed ontology and reasoning rules 
for all these phases. This agent is used to generate several 
autonomous agents, each specialized for a specific phase of 
APT intrusion detection in a CSOC, as discussed next.  

Cognitive Assistants for APT Detection 
 Fig.2 shows an overview of the architecture of the Cogni-
tive Assistants for APT Detection (CAAPT).  
 The Trigger Agent receives alerts from a variety of 
sources, such as network IDSs or endpoint protection sys-
tems, uses a matching trigger rule to represent the alert in 
ontological form in a KB, and places that KB into the hy-
pothesis generation queue from which KBs are extracted by 
the Hypothesis Generation Agent. 
 The Hypothesis Generation Agent uses indicator and 
question rules to generate alternative hypotheses that could 
explain the trigger and places the KB into the hypothesis 
analysis queue from which KBs are extracted by the Auto-
matic Analysis Agents.  
 The Automatic Analysis Agents use hypothesis analysis 
rules to decompose the hypotheses from such a KB, as much 
as possible, down to the level of evidence collection re-
quests. Then they place the KB into the evidence collection 
queue from where each KB is extracted by the Collection 

Manager.  
 The Collection Manager uses collection rules to generate 
search requests and invokes specialized collection agents to 
search for evidence on the network in response to these re-
quests. Then it uses matching collection rules to represent 
the retrieved evidence into the corresponding KB and places 
the KB back into the hypothesis analysis queue for further 
analysis (if needed), until the hypothesis with the highest 
probability is determined. 

Selection and Integration of Collection Agents 
 Abstract searches requested by the analysis agents require 
evidence from multiple types of data sources available on a 
typical network. There are hundreds of security appliances, 
log source, and data store combinations in real-world net-
works. Therefore, a comprehensive set of corresponding 
collection agents is required. Industry research has deter-
mined that the most critical security technologies are a Se-
curity Incident/Event Management (SIEM) system, a net-
work detection/collection solution, and a host detection and 
query solution (Chuvakin, 2018), so our selection of agents 
focused on those areas. We have chosen to use those critical 
technologies, as well as others, as needed, broken down into 
the following categories from the ontology in Fig. 3. 
 Passive network monitors are responsible for passively 
watching data as it moves across the network and either re-

cording it in full or recording 
metadata in the form of logs,  
 Passive host monitors, which 
watch operating system and ap-
plication activity on a host 
computer and record metadata 
as logs. 
 On-demand host agents, 
which allow for collection and 
analysis of raw forensic arti-
facts, including disk and 
memory data, from work-
stations and servers. They can 
also be used to retrieve log data 
generated by passive host mon-
itors in an on-demand fashion. 
 For CAAPT, collection 
agents were chosen based pri-
marily on their ability to collect 
and query data required for de-
tecting sophisticated attacks. 
Based on the requirements for 
modeling detection for APT1 
malware, we chose a collection 
of agents for netflow (network 
connection) data, full packet 
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capture, DNS logs, volatile memory artifacts, Windows 
Registry keys and values, file-based artifacts, endpoint logs, 
domain controller logs, EDR logs, and passive DNS data. 
Next, free or open source solutions were prioritized to elim-
inate cost as a barrier to adoption. Lastly, we chose tools 
supporting a RESTful API (MuleSoft, 2016) for uniformity 
of integration. 
 GRR is used as our sole on-demand host agent and is 
comprised of an agent which must be run on each host com-
puter on the network and a server responsible for managing 
search requests. GRR’s collection functions are managed 
using its RESTful API. 
 The output of passive collection agents is log data which 
must be stored in a SIEM based on tools such as Elas-
ticsearch or Splunk. For CAAPT, we use Elasticsearch as a 
SIEM. As shown in Fig.4, all passive collectors used by the 
system send log data, in the form of JSON documents, to 
Elasticsearch for storage and indexing. 
 For collection agents having a non-JSON log format 
(such as SYSMON and BRO) Elasticsearch Beats (Beats, 
2018) are used to convert the logs to JSON before sending 
them to Elasticsearch. This includes Filebeat for collecting 
BRO logs, Winlogbeat for collecting SYSMON and Win-
dows system logs, and Packetbeat for collecting raw net-
work data. 

 VirusTotal provides a free passive DNS database which 
is used for historical domain/IP resolution queries, and 
Rekall (2017) is used by GRR to retrieve raw memory arti-
facts from hosts.  

Generating Abductive Triggers from Threat 
Intelligence 

 The cognitive assistants in CAAPT respond to and inves-
tigate security alerts generated by a CSOC’s security infra-
structure, where an analyst is typically required to conduct 
follow-on analysis to determine whether a threat was accu-
rately identified. The first step in this process is to use avail-
able detection technologies to identify potential threats 
based on threat intelligence and use the resulting security 
alerts to trigger the abductive reasoning process. This sec-
tion describes the process CAAPT uses to generate abduc-
tive triggers from threat intelligence. 
 At its core, security alerts are created by applying threat 

intelligence to data collected by security sensors, which in-
clude endpoint security such as anti-virus software or net-
work-based firewalls and intrusion detection systems. 
Threat intelligence data is distributed in the form of indica-
tors of compromise (IOCs), which include file hashes, anti-
virus signatures, and the fully-qualified domain names 
(FQDNs) or IP addresses of known malicious servers. Secu-
rity alerts come in a variety of formats but are normalized 
and sent to the SIEM. 
 Fig.5 shows an overview of the process by which a BRO 
alert log entry becomes an alert message sent to the CAAPT 
Trigger Agent. BRO was chosen as the IDS because of its 
ability to easily consume network threat intelligence and ef-
ficiently apply it to identify threats, it also generates logs for 
network metadata for use in follow-on analysis. 
 The first step in the process is to convert logs from the 
CSV format to a JSON message and transport the log entry 
to our Elasticsearch database. This is done using FileBeat. 
 Next, a process is required to search Elasticsearch for new 
alerts and send them to the Trigger Agent. We developed a 
custom Windows program called the Alert Generation Ser-
vice to perform this task. This service polls Elasticsearch on 
a specified interval, looking for alert log entries generated 
by BRO. A new Trigger Agent message is created for each 
new alert, using relevant information from the BRO alert, 
and sent to the Trigger Agent to start the analytic process. 
 In the example in Fig.5, an alert was generated by BRO 
because a computer it was monitoring made a DNS request 
to resolve a domain known, via threat intelligence, to be as-
sociated with APT1. The message sent to Elasticsearch con-
tains several extemporaneous data elements added by 
FileBeat. For the purposes of threat detection, the system is 
primarily concerned with the information contained in the 
message data element. The Alert Generation Service parses 
that field, converting the relevant data fields into appropriate 
data elements required for the JSON message on the right. 
 When the message is received by the Trigger Agent, it is 
added to the knowledge base in the form of an ontology frag-
ment, as shown on the far right of Fig.5. Each field in the 
JSON message is ingested as an instance of a fact in the on-
tology. In this example, knowledge of the connection 
(source and destination IPs and ports) is captured directly 
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from the BRO alert. The Trigger Agent can further specify, 
based on a learned rule, that the destination port is for DNS 
because it uses standard port 53. The domain a-jsm.infobusi-
nessus.org is associated with the connection.  Because the 
knowledge base includes modeled knowledge of adversary 
TTPs, the domain’s association with APT1 is automatically 
recognized. The alert information is added to the knowledge 
base using ontology actions associated with the learned trig-
ger rule that matched the BRO alert. 
 When the process described in Fig.5 is complete, the Trig-
ger Agent places a new knowledge base to be used for fur-
ther analysis into the hypothesis generation queue. The Hy-
pothesis Generation Agent then uses the new knowledge 
base for the abductive reasoning process, using learned rules 
to create a set of multiple competing hypotheses which 
could explain why the alert was generated. First, an indica-
tor rule is matched, which generates a hypothesis from the 
suspicious connection that there is an active APT1 intrusion 

on the network. Then a question rule is matched, to generate 
a question which the previously generated hypothesis could 
answer. From the question rule, multiple competing plausi-
ble hypotheses are generated, which also could answer the 
question. Generation of the set of multiple competing hy-
potheses is called abductive reasoning and completes the 
first phase of the theoretical model of APT detection. 
 Fig.6 shows an example of the abductive reasoning pro-
cess. Using an indicator rule, the agent generates the hypoth-
esis that the connection is part of an APT1 intrusion. How-
ever, there are multiple hypotheses which could explain the 
connection, including both those generated based on mod-
eled adversary knowledge and those that would indicate a 
false positive. In this example, we offer two plausible false 
positive hypotheses. The first is that connection was gener-
ated as part of security intelligence gathering. Security op-
erations or research personnel often accidentally trigger se-
curity alerts performing their duties. The second hypothesis 

is that a trusted application made the connection. Secu-
rity tools often perform DNS lookups as part of their 
data enrichment features. Unless the IDS is configured 
to exclude applications performing this type of activity, 
false positive alerts can be generated. It should be noted 
both of these types of false positives were accidentally 
triggered during the course of this research.  

Hypothesis-driven Search for Evidence 
 Once a set of hypotheses are generated, the next phase 
is the deductive reasoning process, where each top-level 
hypothesis is decomposed into one or more sub-hypoth-
eses. The process, executed by an Automatic Analysis 
Agent, continues until a set of leaf hypotheses are gen-
erated requiring one or more searches for evidence. This 
overall process is called hypothesis-driven search.   

Figure 6: Hypotheses generation from abductive trigger. 

 
Figure 5: How security alerts become abductive triggers. 



Fig.7 shows an example of the initial hypothesis decom-
position tree for the detection of an APT1 intrusion, based 
on modeled adversary knowledge. At the top level, we de-
compose the hypothesis stating the network connection 
causing the BRO alert is the result of an APT1 intrusion, 
into two sub-hypotheses. The sub-hypothesis on the left 
states the connection involves an active C2 server. This hy-
pothesis is further broken down to its two components: the 
domain a-jsm.infobusinessus.org was active at the time of 
the connection and was registered using a dynamic DNS 
provider. These are typically true when there is an active 
APT1 attack. The sub-hypothesis on the right states the pro-
gram used in the attack is APT1 malware. 
 The leaf nodes of the decomposition tree result in three 
different searches for evidence. All three searches will even-
tually lead to evidence being added to the KB for this secu-
rity alert investigation. The search for the program that made 
the network connection will result in that branch of the de-
composition tree being further decomposed, asking more 
detailed questions about the behavior of the malware. 

Using Search Results as Evidence 
 The abstract searches from Fig.7 must be turned into con-
crete searches for real evidence on the network. The Collec-
tion Manager is responsible for that process. Let’s consider, 
for example, the left-most search from Fig.7, which is look-
ing for the IP address to which a domain was mapped at a 
specific point in time. Using the JSON request template as-
sociated with the collection rule that generated that leaf, the 
JSON-formatted search message at the top center of Fig.8 is 
created and sent to the Collection Manager. 
 

When the Collection 
Manager receives this mes-
sage, it will call the func-
tion GetDomainI-
PResolution, which is one 
of the programmed search 
functions supported by the 
Collection Manager, map-
ping data elements from 
the search into function pa-
rameters. GetDomainI-
PResolution uses a passive 
DNS database, such as the 
one maintained by Vi-
rusTotal, to determine the 
IP address mapped to 
APT1 domain a-jsm.info-
businessus.org at the time 
specified in the timeStamp 
field in the JSON request. 

Modeling Search Results as Evidence 
 When the Collection Manager completes the Get-
DomainIPResolution search, it will respond to the calling 
agent with the JSON-formatted response from the upper 
right part of Fig.8. 
 The response message contains the input parameters from 
the search request, a requestID used by the Collection Man-
ager and calling agent to map response messages to the cor-
responding request messages, and the output parameters. In 
this example, it was determined, based on passive DNS data, 
that the domain a-jsm.infobusinessus.org was mapped to the 
IP address 69.195.129.72 at time 12/23/2017 12:18:07 PM 
because that IP address was assigned to the domain at the 
time in mappingStartTime (01/15/2017 11:11 GMT” and it 
is still assigned (mappingEndTime is set to “present”). 
 The response message also includes a human-readable 
description of what the found evidence means (evidenceDe-
scription), and the value denoted in the evidenceCredibility, 
which is a value on a linear probability scale ranging from 
L0 (Lack of Support) to L11 (Certain). In this case, the Col-
lection Manager is certain the returned evidence is credible. 
The response is matched with the JSON response template 
associated with the corresponding collection rule, and the 
ontology actions associated with the same rule are used to 
generate the ontology fragments corresponding to the data 
elements in the response message and store them in the 
knowledge base as evidence as shown in Fig.8. 
 This evidence can now be used by automatic analysis 
agents to decide on the likelihood of an actual APT1 attack 
present on the network, or to request additional evidence, if 
needed. 

 
Figure 7: Hypothesis-driven search for evidence. 



Collection Manager Architecture 
 The Collection Manager is the main integration point be-
tween the cognitive agents and CSOC infrastructure. The 
analysis agents know what information is needed to expand 
their analyses, but the search requests are in abstract form. 
The primary function of the Collection Manager is translat-
ing high-level (abstract) search instructions into specific 
API calls to host and network agents, determining which 
such agent to send search requests to, and wrapping calls to 
specific search agents with a RESTful API. Results returned 
from search agents are then converted into evidence and 
added to the knowledge bases of the analysis agents.  
  Fig.9 is an overview of the Collection Manger process. 
When the analysis agents analyze competing hypotheses, 
many of the searches generated by the hypothesis-driven 
search process (such as those in Fig.7) are sent to the Col-
lection Manager and added to the request queue. Requests 
are then dispatched for processing and a receipt message is 
sent back to the caller. The receipt includes the requestID so 
the response can be matched to the search. To minimize re-
dundant searching and increase performance, the Collection 
Manager performs caching of search results. Each search re-
quest is hashed, and the hash value is used as a key to the 
cache table. A duplicate search will have a matching hash 
value and its result can be used instead of re-executing the 
search. When a search is conducted, results of each search 
are added to the cache with the appropriate key and a time 
to live (TTL) value. Once the TTL is expired, the search re-
sults are considered invalid and are purged from the cache. 
 Abstract searches requested by analysis agents require ev-
idence from multiple types of data sources available to the 
CSOC. In order for the analysis agents to integrate with real 
networks, the Collection Manager uses a plugin architecture 

for search agent wrappers, allowing it to easily translate ab-
stract search requests into requests for information from real 
search agents. 
 Depending on the amount of time required to complete a 
search, requests to a search agent can be either synchronous 
or asynchronous. From the perspective of analysis agents, 
all requests are asynchronous, but internally, the Collection 
Manager supports both call models. 
 In the synchronous call model, there is a single thread for 
responsible for dequeuing abstract search requests from the 
Request Queue, formatting a concrete search for a specific 
search agent and dispatching the request to the appropriate 
search agent. It then waits on the TCP connection for a syn-
chronous response. When it is received, the thread is respon-
sible for parsing the response to extract digital artifacts, for-
matting it as evidence, and sending it to the caller. 
 In the asynchronous call model, the call happens in two 
threads. In one thread, the abstract search request is received 
from the Request Queue. The request is parsed, and a con-
crete search request is prepared and sent to the intended 
search target. A second thread is responsible for polling the 
search target on an interval for the response. When it is 
available, the response data is parsed, artifacts are extracted, 
and a response is prepared and sent to the Response Queue. 
 The Collection Manager’s flexible architecture and sup-
port of multiple call models allows it to easily integrate with 
a wide variety of security infrastructure, making the process 
of porting CAAPT to a new CSOC straightforward. 

Status and Future Research 
A first prototype of the presented system was completed in 
January 2018. A final prototype is currently under develop-
ment, with a focus on improving agent teaching, experimen-

 
Figure 8: Automatic evidence collection and use. 



tation within a simulated CSOC, and experimental integra-
tion into a real CSOC. The CAAPT system will be evaluated 
using a testing methodology designed to demonstrate its 
ability to detect and adapt to APT attacks.  Additionally, the 
system’s performance will be compared against data col-
lected from a large CSOC to compare it to manual analysis 
processes in real-world situations. We expect the final pro-
totype will significantly increase the probability of detecting 
intrusion activity while drastically reducing the workload of 
the operators. 

Acknowledgements 
This research was sponsored by the Air Force Research La-
boratory (AFRL) under contract number FA8750-17-C-
0002, and by George Mason University. The views and con-
clusions contained in this document are those of the authors 
and should not be interpreted as necessarily representing the 
official policies or endorsements, either expressed or im-
plied, of the U.S. Government. 

References 
Beats. 2017. Beats, https://www.elastic.co/products/beats 
Boicu, M., Tecuci, G., Marcu, D., Bowman, M., Shyr, P., Ciucu, 
F., and Levcovici, C. 2000. Disciple-COA: From Agent Program-
ming to Agent Teaching, Proc. 27th Int. Conf. on Machine Learn-
ing (ICML), Stanford, California: Morgan Kaufman. 
Chuvakin, A., 2018. The Best Starting Technology for Detection? 
https://blogs.gartner.com/anton-chuvakin/2018/03/06/the-best-
starting-technology-for-detection/  
Elasticsearch, 2015. Elasticsearch: RESTful, Distributed Search & 
Analytics, https://www.elastic.co/products/elasticsearch 
EnCase, 2017. EnCase Endpoint Investigator - Remote Digital In-
vestigation Solution, https://www.guidancesoftware.com/encase-

endpoint-investigator 
FireEye. 2015. APT30 and the Mechanics of a Long-Running 
Cyber Espionage Operation, https://www.fireeye.com/blog/threat-
research/2015/04/apt_30_and_the_mecha.html 
GRR, 2013. Grr: GRR Rapid Response: Remote Live Forensics for 
Incident Response, https://github.com/google/grr 
Mandiant, 2013. APT1 - Exposing One of China’s Cyber Espio-
nage Units, https://www.fireeye.com/content/dam/fireeye-
www/services/pdfs/mandiant-apt1-report.pdf 
Meckl, S., Tecuci, G., Marcu, D., Boicu, M., and Bin Zaman, A., 
2017. Collaborative Cognitive Assistants for Advanced Persistent 
Threat Detection, in Proceedings of the 2017 AAAI Fall Sympo-
sium “Cognitive Assistance in Government and Public Sector Ap-
plications,”171-178, AAAI Technical Report FS-17-02, Arling-
ton, VA: AAAI Press, Palo Alto, CA. 
MuleSoft, 2016. What Is REST API Design? 
https://www.mulesoft.com/resources/api/what-is-rest-api-design. 
Splunk, 2015. Operational Intelligence, Log Management, Appli-
cation Management, Enterprise Security and Compliance, 
http://www.splunk.com/ 
Paxson, V., 1999. Bro: A System for Detecting Network Intruders 
in Real-Time, Computer Networks 31, 23–24, 
https://doi.org/10.1016/S1389-1286(99)00112-7 
Rekall, 2017. Rekall Memory Forensic Framework, 
http://www.rekall-forensic.com/ 
Tecuci, G. 1988. Disciple: A Theory, Methodology and System for 
Learning Expert Knowledge, Thése de Docteur en Science, Uni-
versity of Paris South.  
Tecuci G., 1998. Building Intelligent Agents: An Apprenticeship 
Multistrategy Learning Theory, Methodology, Tool and Case 
Studies, San Diego: Academic Press. 
Tecuci G., Boicu M., Boicu C., Marcu D., Stanescu B., and Bar-
bulescu M., 2005. The Disciple-RKF Learning and Reasoning 
Agent, Computational Intelligence, Vol.21, No.4, pp. 462-479.  
Tecuci G., Boicu M., Marcu D., Boicu C., and Barbulescu M. 
2008. Disciple-LTA: Learning, Tutoring and Analytic Assistance, 
Journal of Intelligence Community Research and Development.  
Tecuci G., Marcu D., Boicu M., Schum D.A., 2016a. Knowledge 
Engineering: Building Cognitive Assistants for Evidence-based 
Reasoning, Cambridge University Press. 
Tecuci, G., Schum, D. A., Marcu, D., and Boicu, M. 2016b. Intel-
ligence Analysis as Discovery of Evidence, Hypotheses, and Argu-
ments: Connecting the Dots, Cambridge University Press. 
Tecuci, G., 1993. Plausible justification trees: A framework for 
deep and dynamic integration of learning strategies. Machine 
Learning, 11(2-3), pp.237-261. 
Tecuci G., Kodratoff Y. (eds.) 1995. Machine Learning and 
Knowledge Acquisition: Integrated Approaches, Academic Press. 
Tecuci G., Marcu D., Meckl S., Boicu M., 2018. Evidence-based 
Detection of Advanced Persistent Threats, in Computing in Sci-
ence and Engineering, November. 
Ponemon Institute, 2017. The Cost of Insecure Endpoints. 
https://datasecurity.dell.com/wp-content/up-
loads/2017/09/ponemon-cost-of-insecure-endpoints.pdf 
Volatility, 2015. Volatility, GitHub, https://github.com/volatili-
tyfoundation/volatility 
Zimmerman, C., 2014. Ten Strategies of a World-Class Cyberse-
curity Operations Center. MITRE Press. 

 
Figure 9: Collection Manager Overview. 


