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Abstract

In this work we propose a robust adversarial training model
on hybrid word–char embeddings as developed in (Rei,
Crichton, and Pyysalo 2016) based on the recent works of
(Miyato, Dai, and Goodfellow 2016). The proposed neu-
ral training model addresses the existing critical issues with
word–only embeddings which includes: poor vector repre-
sentation for rare words and no representation for unseen
words and the lack of proper mechanism to incorporate
morphene–level informations that are not shared with the
whole dictionary which, subsequently, leads to poor qual-
ity embeddings and hence low quality examples/adversarial
examples. We present description of the proposed adversar-
ial training model/architecture and addresses the implemen-
tation aspects at the word–char level. Our preliminary result
on sequence labeling task on the First Certificate in English
(FCE-PUBLIC) dataset (Yannakoudakis, Briscoe, and Med-
lock 2011) shows an improvement in accuracy of adversarial
(regularized) training on word-char embedding over the base-
line word-char embedding as well as on individual word/char-
only and concatenated embeddings, as expected. The prelim-
inary results also show that perturbation at word-char level
yields better accuracy as compared to individual word-only
and char-only perturbations.

Introduction
In this article we investigate the impact of adversarial
training (Miyato, Dai, and Goodfellow 2016) on hybrid
word-char embeddings, as developed in (Rei, Crichton, and
Pyysalo 2016), on performance of Long Short-Term Mem-
ory (LSTM) based neural training models (Hochreiter and
Schmidhuber 1997). In (Szegedy et al. 2013) and (Goodfel-
low, Shlens, and Szegedy 2014), it was shown that current
neural models, particularly those that are linear or semi–
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linear w.r.t. the input are vulnerable to adversarial exam-
ples which are typically generated by simple linear, but
carefully tuned perturbations of the input dataset. Addition-
ally, in (Goodfellow, Shlens, and Szegedy 2014), it was
demonstrated that adversarial training improves model per-
formance at least in image classification tasks. In (Miyato,
Dai, and Goodfellow 2016), the authors used adversarial
and virtual adversarial (semi-supervised) training to improve
a text or RNN models. Though word vector embeddings,
in general, yield high quality vector representation for fre-
quently seen words, they tend to produce poor quality word
vectors for less frequent words and no embedding at all
for previously unseen words (out of vocabulary represen-
tation), and character–level information is not shared with
the whole dictionary (Rei, Crichton, and Pyysalo 2016). As
a result, most of the time the generated example either does
not change because there is no neighbor near enough, or else
the perturbed context is not adversarial enough. In this work,
we attempt to address these issues through hybrid implanta-
tion of word–char embedding under the settings described in
(Rei, Crichton, and Pyysalo 2016) to develop a neural learn-
ing scheme for the generation and exploitation of adversarial
examples in Natural Language Processing (NLP) contexts.
We implement the proposed adversarial training model on
LSTM based hybrid word-char embedding on a sequence
labeling task on the FCE–PUBLIC (First Certificate in En-
glish) dataset (Yannakoudakis, Briscoe, and Medlock 2011).
In section 2, a brief description of our proposed adversarial
training model based on word–char embeddings followed by
preliminary experimental results and discussions in Section
3.

Adversarial Training on the Word–Char
Embedding Architecture

Word embeddings, in general, yield high quality distribu-
tional vector representation for frequently seen words, with
semantically and functionally similar words having similar
representations. However, they tend to produce poor qual-
ity word vectors for less frequent words and no embed-
ding at all for previously unseen words (Out of Vocabu-
lary words). Furthermore, there is no mechanism to exploit
character–level patterns and sentimental words that are com-
monly unseen words in sentimental datasets such as Twit-



Figure 1: A bi–directional LSTM based hybrid word–char embed-
ding (Extracted from (Rei, Crichton, and Pyysalo 2016))

Figure 2: The proposed Architecture for Adversarial training on
LSTM–based word–char embedding

ter datasets 1, and no immunity to typos (Rei, Crichton, and
Pyysalo 2016). Consequently, the quality of adversarial ex-
amples generated using word-level only embeddings will in-
herit these weaknesses. In an attempt to address these criti-
cal issues we propose adversarial training on a bi–directional
LSTM–based hybrid word-char architecture [ Rei, Crichton,
and Pyysalo2016)] as described in equation 1 below:

In the word–char embedding settings (Rei, Crichton, and
Pyysalo 2016), a given word w will have dual vector repre-
sentations, namely xw and cw as modeled in word2vec and
the bidirectional char LSTM embeddings respectively. The
hybrid architecture has a gating mechanism, also referred
to as attention, which allows the model dynamically decide
which level of information to tune into for each such word
w in the dataset.

This will be achieved through two additional layers im-

1Ashby, Charless, TensorFlow tutorial-analyzing Tweet’s
sentiment with character Level LSTM’s, Deep Learning Blog,
https://charlesashby.github.io/2017/06/05/sentiment-analyssi-
withchar-lstm/

plementing the weight vector

z = σ(W (3)
z tanh(W (1)

z xw +W (2)
z cw)), (1)
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z respectively are weight matrices

for calculating z, and σ is the sigmoid function. The hybrid
embedding vector x̃w (x̃ in Figure 1) will then be expressed
as the z–weighted sum of xw (x in Figure 1) and cw (m in
Figure 1), given by

x̃w = z ∗ xw + (1− z) ∗ cw (2)

(point–wise multiplication). The bidirectional LSTM real-
ization of the character based word embedding m (Figure 1)
is given by m = tanh(Wmh

∗) where h∗ = [
−→
h∗R;
←−
h∗L] where

the
−→
h∗R and

←−
h∗L are the extreme left and right hidden vec-

tors (resp.) from each of the two LSTM components, namely
−→
h∗i = LSTM(ci,

−−→
h∗i−1) and

←−
h∗i = LSTM(ci,

←−−
h∗i+1), i =

1, ...length(w). Furthermore, the attention–based architec-
ture requires that the learned features in both word vectors
xwand cw align. This will need to be incorporated as extra
constraint on the loss function to encourage this agreement
by optimizing

J̃ = J +

T∑
k=1

gk(1− cos(cwk
xwk

)), (3)

where J is the original embedding cost and J̃ is the mod-
ified cost function and gk is defined as gk(wk) = 0 for
wk = OOV (Out Of Vocabulary words) and gk(wk) = 1
otherwise, k = 1, .., T (T is the size of the input se-
quence (text)). Adversarial perturbation will then be ap-
plied on x̃w, as implemented in (Rei, Crichton, and Pyysalo
2016) to generate its adversarial counterpart, x̃advw , given
by x̃advw = x̃w + r̃w

adv where r̃wadv =
ε∇x̃wJ(y|x̃w,θ)
||∇x̃wJ(y|x̃w,θ)||2 ,

J(x̃w, θ) is the loss function (the negative loss likelihood
function − log(p(y|x, θ)) for a classifier), θ is the param-
eter of the model (which should be viewed as a constant
throughout the adversarial example generation process) and
ε is the perturbation parameter. This needs to be done dy-
namically for each word vector x̃w to generate the needed
adversarial examples. The aggregated adversarial perturba-
tion on the concatenated sequence s (the labeled input text)
of the (normalized) embedding vectors [x1, x2, ..., xT ] is de-
fined as r̃sadv =

ε∇sJ(y|s,θ)
||∇sJ(y|s,θ)||2 and it’s corresponding adver-

sarial loss is defined as

Jadv(θ) = −
1

N

N∑
n=1

J(yn, sn + r̃advn , θ) (4)

which will ensure robustness to the specified adversarial per-
turbation.

Here N denotes the number of labeled examples,
s1, s2, ...sN are the input sequence of texts with correspond-
ing labels y1, y2, ...yn. For virtual adversarial training (semi-
supervised training), following the formalism in (Miyato et
al. 2015), we define the virtual adversarial perturbation as

r̃vadv =
ε∇s+dKL[p(., s, θ)][p(., s+ d, θ)]

||∇s+dKL[p(., s, θ)][p(., s+ d, θ)]||2
(5)



where KL[p][q] denotes the KL divergence between distri-
butions p and q.

The associated virtual adversarial loss will then be defined
by

Jvadv(θ) =
1

N ′

N ′∑
n=1

KL[p(., sn, θ)][p(., sn + r̃vadvn , θ)]

(6)
where r̃nvadv is the adversarial perturbation for the nth text
(unlabeled) and N ′ is the number of such unlabeled texts
(examples).

The crucial distinction between the adversarial (super-
vised) and the virtual adversarial (unsupervised) is that the
perturbation (equation 5) and the loss function (equation 6)
do not depend on the input labels which makes it applicable
to unlabeled examples. (semi-supervised adversarial train-
ing). Furthermore, to regularize the flow of adversarial ex-
amples we use (Miyato, Dai, and Goodfellow 2016) the reg-
ularized adversarial loss

J̃(x, θ) = αJ(x, θ) + (1− α)J(x+ r̃adv, θ) (7)
(where 0 ≤ α ≤ 1 is the regularizing parameter) which will
effectively make them resist and keep up with the current
version of the model. The main of the paper is the proposal
and preliminary testing of the adversarial training architec-
ture on hybrid word–char embedding based on the exist-
ing framework (word–char embedding and adversarial train-
ing for semi–supervised text classification) as developed in
(Rei, Crichton, and Pyysalo 2016) and (Miyato, Dai, and
Goodfellow 2016). In the next section, we present the ex-
perimental settings and some preliminary results on a neu-
ral sequence labeling task on FCE–PUBLIC dataset (Yan-
nakoudakis, Briscoe, and Medlock 2011).

Experiments on FCE–PUBLIC Dataset
The FCE–PUBLIC (for Error detection) dataset (Yan-
nakoudakis, Briscoe, and Medlock 2011) (Rei and Yan-
nakoudakis 2016) consists of 1141 examination Scripts for
training, 97 examination Scripts for testing, 6 examination
scripts for outliers experiments and 80 randomly selected
scripts for developmental set. Tokens that have been anno-
tated with an error tag are labeled as incorrect (i), otherwise,
they are labeled as correct (c). The data is organized in a the
Conference on Natural Language Learning (CoNLL) tab-
separated format. Each line contains one token, followed
by a tab and then the error label. With CoNLL format the
dataset has 452833 train, 34599 developmental and 41477
test tokens. The total number of parameter count for the
three representation are 2972052 (Word–based), 3452052
(Char concat) and 3152352 (Char attention) of which only
a small fraction of the embeddings are utilized at every it-
eration. We performed the proposed adversarial trainings
on Sequence Labeling (bidirectional LSTM) on word-char
embedding on the FCE–PUBLIC Dataset 2. The prelimi-
nary experimental results are briefly shown in Table 1 and

2We adopted here Tensorflow implementation of se-
quence labeling on FCE–PUBLIC dataset available at
https://github.com/marekrei/sequence-labeler.

Table 2. Table 1 presents performance of the regularized
(α = 0.5) adversarial training on word-char embedding on
the dataset. The F0.5–Score metric was used as an evaluation
criterion as established in earlier works (Rei, Crichton, and
Pyysalo 2016). The preliminary results (Table 1) shows an
improvement in accuracy of adversarial (regularized) train-
ing on word-char embedding over both the baseline word-
char embedding as well as on individual word/char-only and
concatenated embeddings. Table 2 presents comparative ac-
curacy results of the regularized adversarial training at the
three representations levels (namely, word-only, char-only
and word-char). These preliminary results show that pertur-
bation at word-char level yields better accuracy as compared
to individual word-only and char-only perturbation. Adver-
sarial training at word-char level (Table 1 and Table 2) also
performs better as compared to random perturbations as ex-
pected.

Table 1: Performance of Regularized Adversarial Training on
Word-Char Embedding on FCE- PUBLIC Dataset. (F0.5–Scores)
Word embedding: Word-Only Char-Only Word-Char(Concact.) Word-Char (attention)

Devt. Test Devt. Test Devt. Test. Devt. Test
Baseline: 49.57 46.91 41.45 37.50 51.88 48.24 50.08 47.78
Random Perturbation: 52.24 48.49 52.99 49.63 53.01 50.01 52.92 49.74
Adv. Training( Regularized): 54.82 51.07 46.61 42.00 55.99 52.87 57.14 53.55

Table 2: Comparisons of regularized adversarial trainings at var-
ious perturbation levels (modes) on FCE–PUBLIC dataset. (F0.5–
Scores)
Pertubation Modes: Word-Only Perturb Char-Only Perturb Word-Char(conc.) Perturb Word-Char(attn.) perturb

Devt. Test Devt. Test Devt. Test. Devt. Test
Random Perturbation: 53.70 50.33 53.07 49.74 53.01 50.01 52.92 49.74
Adv. Training (Regularized): 52.79 49.15 53.58 49.30 55.99 52.87 57.14 53.55

Conclusion
This work seeks to develop improved adversarial training
model acting on word–char embeddings. It is well known
that word–only/char–only embeddings have a major draw-
backs in handling rare/unseen words and character–level in-
formation which subsequently leads to poor representation
of valid and hence adversarial examples. The proposed ad-
versarial training model is intended to overcome these chal-
lenges by applying the adversarial perturbation on word–
char embeddings. It is envisioned that the proposed model
along with adversarial regularization (i.e, fine tuning the
parameter α) will bring significant improvements over the
existing word–only/char–only adversarial training architec-
tures. We performed some preliminary numerical experi-
ments on the impact of regularized adversarial training on
word–char embedding on a neural sequence labeling task on
the FCE-PUBLIC dataset. Our preliminary result shows an
improvement in accuracy of adversarial (regularized) train-
ing on word-char embedding over both the baseline word-
char embedding as well as on individual word/char-only and
concatenated embeddings. These preliminary results also
show that perturbation at word-char level yields a better ac-
curacy as compared to individual word-only and char-only
perturbation. Further testing of the model need to be per-
formed on several representative neural sequence labeling



and text classification tasks and various datasets.
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