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Abstract

This work demonstrates a physical attack on a deep learning
image classification system using projected light onto a phys-
ical scene. Prior work is dominated by techniques for creat-
ing adversarial examples which directly manipulate the digi-
tal input of the classifier. Such an attack is limited to scenar-
ios where the adversary can directly update the inputs to the
classifier. This could happen by intercepting and modifying
the inputs to an online API such as Clarifai or Cloud Vision.
Such limitations have led to a vein of research around physi-
cal attacks where objects are constructed to be inherently ad-
versarial or adversarial modifications are added to cause mis-
classification. Our work differs from other physical attacks in
that we can cause misclassification dynamically without al-
tering physical objects in a permanent way.

We construct an experimental setup which includes a light
projection source, an object for classification, and a camera to
capture the scene. Experiments are conducted against 2D and
3D objects from CIFAR-10. Initial tests show projected light
patterns selected via differential evolution could degrade clas-
sification from 98% to 22% and 89% to 43% probability for
2D and 3D targets respectively. Subsequent experiments ex-
plore sensitivity to physical setup and compare two additional
baseline conditions for all 10 CIFAR classes. Some physical
targets are more susceptible to perturbation. Simple attacks
show near equivalent success, and 6 of the 10 classes were
disrupted by light.

Introduction

Machine learning models are vulnerable to adversarial at-
tacks by making small but targeted modifications to inputs
that cause misclassification. The research around adversar-
ial attacks on deep learning systems has grown significantly
since (Szegedy et al. 2013) demonstrated intriguing proper-
ties. The scope and limitations of such attacks is an active
area of research in the academic community. Most of the
research has focused on the purely digital manipulation. Re-
cently, researchers have developed techniques that alter or
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manipulate physical objects to fool classifiers, which could
pose a much greater real world threat.

Related Research

Researchers have proposed many theories about the cause
of model vulnerabilities. Evidence suggests that adversarial
samples lie close to the decision boundary in the low dimen-
sional manifold representing high dimensional data. Adver-
sarial manipulation in the high dimension is often impercep-
tible to humans and can shift the low dimensional represen-
tation to cross the decision boundary (Feinman et al. 2017).
Many approaches are available to perform this manipulation
if the attacker has access to the defender’s classifier. Further-
more, adversarial examples have empirically been shown
to transfer between different classifier types (Papernot, Mc-
Daniel, and Goodfellow 2016; Szegedy et al. 2013). This
enhances the attacker’s potential capability when there is no
access to the defender’s classifier.

It is difficult for defenses to keep pace with attacks, and
the advantage lies with the adversary. This was highlighted
when seven of the eight white box defenses announced at
the prestigious ICLR2018 were defeated within a week of
publication (Athalye, Carlini, and Wagner 2018).

Researchers have successfully demonstrated physical
world attacks against deep learning classifiers. Some of the
first physical attacks were demonstrated by printing an ad-
versarial example, photographing the printed image, and
verifying the adversarial attack remained (Kurakin, Good-
fellow, and Bengio 2016). (Sharif et al. 2016) demonstrated
printed eyeglasses frames that thwart facial recognition sys-
tems and fully avoid face detection by the Viola-Jones object
detection algorithm. It has also been noted that near infra-
red light can also be used to evade face detection (Yamada,
Gohshi, and Echizen 2013). Our work is different because
we leverage dynamic generation methods use real world
feedback when learning the patterns of light to project.

Putting aside adversarial attacks, most image classifiers
are not inherently invariant to object scale, translation, or
rotation. Notable exceptions are (Cohen and Welling 2014),
which attempts to learn object recognition by construction
of parts, and (Qi et al. 2017) which use 3D point cloud rep-
resentation for object classification. To some degree, this in-
variance can be learned from training data if it has intention-
ally been designed to address this gap. For example the early



work by (LeCun, Huang, and Bottou 2004) was evaluated
with the NORB dataset which was systematically collected
to assess pose, lighting, and rotation of 3D objects.

Simulating scale, translation, and rotation of 2D images
is conducive to experiment automation, and many recent ad-
vances in rotational invariance such as Spatial Transformer
Networks (Jaderberg et al. 2015), use this framework for
evaluation of robustness to these properties. However, fur-
ther research is needed to validate the ability of this simu-
lated rotational invariance to transfer to real world rotation
of 3D figures. We emphasize the need for invariant models
because it is impossible to disambiguate the success of an
attack when it is can only be validated with a weak model.

Maintaining adversarial attack under a range of pose or
lighting conditions may prove to be the most difficult as-
pect of this task. Some preliminary research suggests this is
possible and demonstrated two toy examples in the physi-
cal world (Athalye and Sutskever 2017). They introduce an
Expectation over Transformation (EoT) method for differ-
entiating texture patterns through a 3D renderer to produce
an adversarial object. An additional demonstration of phys-
ical attack is to introduce an adversarial patch to the physi-
cal scene, which is invariant to location, rotation, scale, and
cause specific misclassification (Brown et al. 2017).

Experimental Setup and Results

We constructed a test environment to perform light based
adversarial attacks and collect data in an office environment
with minimal lighting control. Our attacks were conducted
against 2D and 3D target objects placed in the scene. We
used a projector to project light onto the target and a com-
mon web camera to capture the scene. For the 2D and initial
3D experiments, the projector was a Casio XJ-A257 and the
camera was a Logitech C930e. During the second phase of
3D experiments, we used an Epson VS250 projector, Log-
itech C615 HD camera and an Altura HD-NDS, neutral den-
sity filter to control the light intensity of the projector.

2D Presentation

For the 2D scene, we chose a random image (horse) from
the CIFAR-10 dataset to be attacked. The image was printed
and secured to the wall in front of the camera and projec-
tor. Following a similar methodology of earlier work (Su,
Vargas, and Kouichi 2017) on single pixel attacks we use
differential evolution (DE) to optimize a light based attack
to cause misclassification. Differential evolution is a heuris-
tic global optimization strategy similar to genetic algorithms
where the algorithm maintains a population of candidate so-
lutions, selecting a small number (potentially one) for fur-
ther rounds of modification and refinement. We projected
a digital black 32x32 square containing a single pixel at a
variable location and RGB values. Because projectors can’t
project black (the absence of light) the projector adjusted the
black pixels to present the illusion of a black background.
This adjustment is impacted somewhat by RGB value of
the single pixel being projected. Each iteration of the dif-
ferential evolution was projected, captured, and input to a
standard ResNet38 for classification of the image captured

by the camera. Though only one pixel was modified in the
digital attack pattern, because of the distance between the
projector and object, a larger area in the captured scene and
many input pixels to the camera are modified. The original
and attacked scenes are shown in Figure 1.

Through this attack, the probability of horse was de-
creased from 98% to 22%.

3D Presentation

To demonstrate the potential for light based attacks, we ex-
tended the 2D methodology to a 3D scene in two experimen-
tal phases. First, we placed a toy car in the field of view of
the web camera to capture the scene. To perform the attack,
the projector iteratively applies the same adversarial noise
procedure to the 3D physical scene and the same ResNet38
model is used for evaluation. The object probabilities for the
original scene were 89% automobile and 11% truck.
The attacked scene probabilities were 43 % automobile
and 57% truck. The second phase of experiments was de-
signed to improve the repeatability and confidence of the ini-
tial demonstration. Results are expanded to evaluate all 10
CIFAR classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck. The figurines
used for each of these classes are shown in Figure 4a. The
yellow car in phase 1 was not available and was replaced
with a red car in phase 2.

Rotation invariance is important for interpreting the pre-
sented experimental setup. This impacts our data collec-
tion because we observed in a baseline condition, with
no added light, the distance to the camera and object ori-
entation yielded highly variable classification results. We
tested four experimental conditions: ambient light, white
light from the projector, white light with a randomly located
pixel in the 32x32 grid, and differential evolution process
to control color and location of one pixel in a 32x32 white
grid. We observed classification variability in the physical
scene when no modifications were applied. For this reason
we introduced some lighting controls which observation-
ally provided a significantly more stable baseline classifica-
tion. Three physical modifications were made. The projected
background color was changed from black to white to pro-
vide more uniformity to the scene. We used a foam block to
minimize stray reflections caused by the projector. Addition-
ally we used a neutral density filter to scale the light inten-
sity. To verify stability, we collected twenty image captures
of each test condition, and 200 for differential evolution (50
population sample and 4 evolution phases).

Reproducibility of the physical placement of each object
in the scene is imprecise, thus each test condition was col-
lected in sequence without any disturbance (besides light).
An unrecorded calibration phase was used to reposition
the object for a maximum baseline classification score be-
fore the recorded baseline and light projected data was col-
lected. For each class and test condition, we report the mean,
median, standard deviation, variance, minimum, maximum,
Amean and Amedian. The Amean and Amedian are the
computation of the reduction in probability score for the
given attack type relative to baseline. Larger A numbers rep-
resent more powerful decrease in the true class probability.



(a) The 2D scene without adversarial attack.

(b) The 2D scene with adversarial attack.

Figure 1: Images demonstrating light based attack on 2D physical presentation

All scores are reported in Table 1.

Interpreting the table yields one immediate observation:
some examples (Automobile, Bird, Horse, Ship) are
invariant to the light attack, consistently being identified as
the true class at 100% (within rounding error) while other
classes (Airplane, Cat, Deer, Dog, Frog, and Truck)
have varying degrees of susceptibility. It is unclear whether
these differences are inherent in the classes themselves, or
to the particular figurines we chose. As one might expect
with a research classifier, there is a high degree of variability
based on the particular example. We incremented the com-
plexity of light attack from pure white light, random square,
and differential evolution, to assess if there was something
unique in the more sophisticated attack, or if it was merely
the addition of light, or a pattern, that was causing the ob-
served decrease in classification. In many cases, the simple
addition of white light is as effective as the other attacks. For
example, the mean airplane class was decreased from 1.000
to 0.151, with only the addition of white light. The corre-
sponding trials with random and differential evolution light
patterns yielded only slightly stronger attacks, with 0.113
and 0.133 mean scores respectively. However, the decline is
noteworthy, independent of sophistication.

Discussion

Physical attacks on machine learning systems could be ap-
plied in a wide range of security domains. The literature
has primarily discussed the safety of road signs and au-
tonomous driving (Eykholt et al. 2017; Chen et al. 2018),
however other security applications may also be impacted.
An adversary may be trying to hide themselves or physi-
cal ties to illegal activities to evade law enforcement (e.g.
knives/weapons, contraband, narcotics manufacturing, etc).
Any Al to be deployed for law-enforcement applications
needs to be robust in an adversarial environment where
physical obfuscation could be employed. Light based at-
tacks:

e Can perform targeted and non-targeted attacks.
e Do not modify physical object in a permanent way.
e Can be a transient effect occurring at specified times.

This work aims to be a first step towards understanding the
abilities and limitations of such physical attacks. We picked
a relatively easy first target to verify the possibility and plan

to extend this to more complex physical scenarios and clas-
sification models.

We chose to attack the CIFAR-10 framework in a manner
similar to what was demonstrated in the original single pixel
attack (Su, Vargas, and Kouichi 2017). This framework is
an easier target because it is a low resolution, low param-
eter model. To assess the robustness of stronger models, a
ResNet50 classifier trained on ImageNet was also used to
evaluate all of the collected images. Because of a lack of cor-
responding true class identification, scores are not reported,
but it was observed that the top1 class prediction was shifted
with the addition of light based attacks.

There is also a closed world assumption of 10 relatively
dissimilar classes, where the probability of all classes sums
to one. When a misclassification occurs, it tends to be more
outlandish than it could otherwise be. For example, rose
and tulip might be a more forgiving mistake than frog
and airplane but in the CIFAR closed world framework,
the model is limited to the 10 known classes.

In our attack on the 3D presentation, the true class was
correctly identified as car when no attack was present. By
applying the adversarial light attack, we were able to de-
crease the confidence of car from 89% to 43%, and instead
predict t ruck with 57% probability. We would not iden-
tify this as a 3D attack because we had a fixed orientation
between the camera, projector, and object. In this example,
the single square attack is visually perceptible but transient.
However, the notion of human perception is not as simple
as an L, distance in pixel space. This is highlighted by
the fact that consecutive video frames can be significantly
mis-classified by top performing image classification sys-
tems (Zheng et al. 2016). Images that are imperceptibly dif-
ferent can have large distance in pixel or feature space, and
images that are perceptually different can be close.

A key topic that needs further understanding is why the
extreme variability in class identification. One potential ex-
planation is the degree of self similarity within a class, and
training data bias. For example, the horse images in the
training data, are potentially all self similar and also closely
match the example figurine. The variation between different
types of horses is likely smaller than the visual difference
between different breeds of dogs.

Another possible explanation is the scale or percentage of
the scene that the object occupies. Most of the classes which



(a) The 3D scene without any adversarial attack. (b) The 3D scene with adversarial attack.

Figure 2: Images demonstrating light based attack on 3D physical presentation

(a) Downsampled image without any adversarial attack. (b) Downsampled image with adversarial attack.

Figure 3: Downsampled images demonstrating light based attack on 3D physical representation

(a) The toy figurines used to represent the CIFAR classes.

(b) Physical setup demonstrating relative position of projector,
camera, object, and lighting control.

Figure 4: Experiment setup and figurines for second phase experiments with 3D presentation.



were susceptible to attack were relatively small. The notable
exception was the truck which was actually the largest figure
used for data, yet was still susceptible to misclassification
errors with the addition of light.

There are a several important constraints present when
crafting a light based physical attack that are unconstrained
in a digital attack. Specifically, light is always an additive
noise and turning a dark color to white with the addition of
light is impossible. The angle of projection and the texture
of the scene may impact the colors reflected to the camera.
The camera itself will introduce color balance changes as
it adjusts to the adversarial addition of light. Even a fully
manual camera will always have CCD shot noise, which is a
function of shutter speed and temperature, that could influ-
ence the success or failure of a light based attack. The pro-
jected pixel was not constrained to overlap the target object,
and would appear in the background. Empirically, these sin-
gle pixel projections onto the background of an image could
significantly change classifier predictions.

Conclusion and Future Work

The presented work is an empirical demonstration of light
based attacks on deep learning based object recognition sys-
tems. Adversarial machine learning research has empha-
sized attacks against deep learning architectures, however
it has been observed that other models are equally suscep-
tible to attack and that adversarial examples often transfer
between model types (Papernot, McDaniel, and Goodfellow
2016). The empirical demonstration of light based attack
was against a deep learning architecture. However, based
on this prior work, it is likely that it could be demonstrated
against other model types.

We plan on conducting experiments with higher resolu-
tion and more robust classifiers and more subtle manip-
ulations. We believe that more targeted optimization ap-
proaches that initially focus on sensitive image areas will
likely lead to faster identification of successful attacks. We
expect light based attacks could use more complex projected
textures and take advantage of 3D geometry. Presented re-
sults clearly show light has the potential to be another av-
enue of adversarial attack in the physical domain.
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CIFAR Class | Experiment Condition | Mean | Median | SD | Var | Min | Max | A Mean | A Median
Airplane Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light 151 .101 198 | .039 | .017 | .997 .849 .899
Random 114 .105 .088 | .008 | .022 | .445 .886 .895
Diff Evolution 133 112 .087 | .007 | .014 | .459 .867 .888
Automobile Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light 1.000 | 1.000 | .000 | .000 | .999 | 1.000 .000 .000
Random 1.000 | 1.000 | .000 | .000 | .999 | 1.000 .000 .000
Diff Evolution 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Bird Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light 1.000 | 1.000 | .002 | .000 | .993 | 1.000 .000 .000
Random 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Diff Evolution 1.000 | 1.000 | .000 | .000 | .999 | 1.000 .000 .000
Cat Baseline .990 991 .004 | .000 | .979 .996 .000 .000
White Light .009 .008 .005 | .000 | .000 | .020 981 983
Random 011 .007 .012 | .000 | .001 .047 .979 .984
Diff Evolution .023 .017 .019 | .000 | .002 | .124 967 974
Deer Baseline .999 .999 .000 | .000 | .999 | 1.000 .000 .000
White Light 516 516 145 1 .021 | 242 | 997 483 483
Random .545 .507 155 1 .024 | 327 871 454 492
Diff Evolution 473 467 130 | 017 | .144 | .829 526 532
Dog Baseline .993 .993 .003 | .000 | 986 | .996 .000 .000
White Light 512 499 .088 | .008 | .390 | .695 481 494
Random 482 497 123 1 015 | 136 | 753 S11 496
Diff Evolution .386 .388 .088 | .008 | .123 .601 .606 .605
Frog Baseline .888 .888 .025 | .001 | .842 | .933 .000 .000
White Light .008 .008 .003 | .000 | .000 | .015 .881 .880
Random .030 011 .076 | .006 | .004 | .360 .858 877
Diff Evolution 071 .038 .093 | .009 | .005 576 817 .849
Horse Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light .999 1.000 | .001 | .000 | .993 | 1.000 .000 .000
Random 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Diff Evolution 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Ship Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Random 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Diff Evolution 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
Truck Baseline 1.000 | 1.000 | .000 | .000 | 1.000 | 1.000 .000 .000
White Light .832 .832 .052 | .003 | .729 | 1.000 .168 .168
Random .818 .819 0721 .005 | .634 | .970 182 180
Diff Evolution .826 .839 .088 | .008 | .507 .949 174 .161

Table 1: Classification statistics for baseline and attacked CIFAR figures.




