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Abstract

We consider the problem of adversarial text generation in the
context of cyber-security tasks such as email spam filtering
and text classification for sentiment analysis on social media
sites. In adversarial text generation, an adversary attempts to
perturb valid text data to generate adversarial text such that
the adversarial text ends up getting mis-classified by a ma-
chine classifier. Many existing techniques for perturbing text
data use gradient-based or white-box methods, where the ad-
versary observes the gradient of the loss function from the
classifier for a given input sample, and uses this information
to strategically select portions of the text to perturb. On the
other hand, black-box methods where the adversary does not
have access to the gradient of the loss function from the clas-
sifier and has to probe the classifier with different input sam-
ples to generate successful adversarial samples, have been
used less often for generating adversarial text. In this paper,
we integrate black-box methods where the adversary has a
limited budget of the number of probes to the classifier, with
white-box, gradient-based methods, and evaluate the effec-
tiveness of the adversarially generated text in misleading a
deep network classifier model.

Introduction
Machine learning-based systems are currently used widely
for different cyber-security tasks including email spam fil-
tering, network intrusion detection, sentiment analysis of
posts on social media sites like Twitter, and validating au-
thenticity of news posts on social media sites. Most of these
systems use supervised learning techniques where a learn-
ing algorithm called a classifier is trained to categorize data
into multiple categories. For instance, an automated classi-
fier for an email spam filter classifies incoming email into
spam and non-spam categories. A critical vulnerability of
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classifier-based learning algorithm is that they are suscepti-
ble to adversarial attacks where a malicious adversary could
send corrupted or poisoned data to the classifier that results
in incorrect classification, or, for more calculated attacks,
use corrupted data to alter the classification decisions of the
classifier. Both these attacks could compromise the opera-
tion of the classifier, making it behave in an unintended, pos-
sibly insecure and unsafe manner. As an example, a compro-
mised email classifier could end up categorizing valid email
messages as spam (false positives) while delivering spam
email messages as non-spam (false negatives). An impor-
tant defense against adversarial attacks is to build a model
of the adversary including the data that the adversary gener-
ates, and use this model as a virtual adversary to improve the
learner’s robustness to adversarial attacks. Towards this ob-
jective, in this paper, we investigate adversarial data gener-
ation techniques that could be used to model corrupted data
generated by a virtual adversary. Our work focuses on ad-
versarial text data generation as many of the aforementioned
cyber-security tasks operate mainly on text data.

Adversarial data generation techniques can be broadly
classified into two categories called white-box and black-
box. In white-box techniques, the adversary has access to
information of the classifier, such as the parameters of
the model of the classifier, e.g., weights in a deep neural
network-based classifier, or, to internal calculations of the
classifier, such as the gradients of the loss function calcu-
lated by the classifier on a sample. In contrast, in black-
box techniques, the adversary does not have any informa-
tion about the classifier and treats it like a black-box, by
passing data samples as queries to the classifier and observ-
ing the classifier’s output category or label for each sample.
Additionally, in most practical black-box settings, the adver-
sary can send only a finite number of queries to the classi-
fier due to the adversary’s budget limitations in generating
samples, or, due to restrictions in the number of queries ac-
cepted by the classifier. While white-box techniques such as
gradient-based methods (Liang et al. 2018) have been pro-
posed for generating adversarial text, black box methods for
generating adversarial text (Gao et al. 2018) are less investi-
gated in literature. In this paper, we have describe gray-box
techniques for generating adversarial text where gradient-
based white-box techniques for generating adversarial text
are combined with budget-limited, black-box techniques for



generating adversarial samples. We have evaluated the ad-
versarial text data generated using our proposed technique
using the DBPedia dataset that contains short articles on
14 different categories extracted from Wikipedia, in terms
of the difference from the original data used as a basis to
generate the adversarial data, as well as the effectiveness of
the adversarial data in fooling a classifier into making mis-
classifications. Our results show that using gray-box tech-
niques the divergence in the perturbed text from the original,
unperturbed text increases with the amount of perturbation,
and, more perturbation of original text results in changing
the label of the perturbed text with respect to the original
text more often.

Related Work
Adversarial data generation techniques have received con-
siderable attention from researchers in the recent past. The
main concept in adversarial data generation is to add slight
noise to valid data using a perturbation technique so that the
corrupted data still appears legitimate to a human but gets
mis-classified by a machine classifier. Most research on ad-
versarial data generation has focused on image data, includ-
ing gradient-based methods for perturbing valid data (Biggio
et al. 2013), (Goodfellow, Shlens, and Szegedy 2014), (Pa-
pernot et al. 2016), recurrent neural networks (Gregor et al.
2015), and generative adversarial networks (GANs) (Good-
fellow et al. 2014) and its extensions (Mirza and Osindero
2014), (Chen et al. 2016), (Arjovsky, Chintala, and Bot-
tou 2017). However, rather than generating synthetic data
towards misleading a machine classifier, the objective of
GAN-enabled data generation has been to create synthetic
data that looks convincing to humans.

Adversarial Text Generation. For adverarial image gen-
eration, image characteristics like RGB pixel values, HSV
values, brightness, contrast, etc., are real-valued numbers
that can be manipulated using mathematical operations to
generate perturbed images that can fool a machine classifer
while remaining imperceptible to humans. In contrast, for
perturbing text, adding a real value to a numerical represen-
tation of a word, character, or token in an embedding space,
might result in a new word that might either be nonsense,
or, might not fit in with the context of the unperturbed, orig-
inal text - in both cases, the adversarial text can be easily
flagged by both a machine classifier and a human. To ad-
dress this shortcoming, instead of directly using image per-
turbation techniques to generate adversarial text, researchers
have proposed using auto-encoders (Bengio et al. 2013) and
recurrent neural networks (RNN) with long short term mem-
ory (LSTM) architecture to generate text as sequences of to-
kens (Mikolov et al. 2010), albeit with limitations when gen-
erating adversarial text that looks realistic to humans (Ben-
gio et al. 2015), (Huszár 2015). Recently, GAN-based meth-
ods have been shown to be successful for adversarial text
generation. In adverarial text generation GANs, a feedback
signal (Yu et al. 2017), (Zhang et al. 2017) (Subramanian
et al. 2017) such as a reward value within a reinforcement
learning framework (Fedus, Goodfellow, and Dai 2018) or
high-level features of text identified by the classifier called
leaked information (Guo et al. 2017), is evaluated by the dis-

criminator or classifier and provided to the generator or ad-
versary. The adversary treats this information as a feedback
signal from the classifier about the quality of its adversari-
ally generated text, and adapts future adversarial generations
of words or phrases in the text towards improving the qual-
ity of its generated text. Additional methods for generating
adversarial text are described in (Iyyer et al. 2018), (Jia and
Liang 2017), (Shen et al. 2017). Following gradient-based
techniques for image perturbation (Goodfellow, Shlens, and
Szegedy 2014), (Ebrahimi et al. 2018), (Liang et al. 2018)
have used gradient-based methods to identify tokens in text
that have the highest gradient and consequently most influ-
ence in determining the text’s label in the classifier. These
tokens are then strategically modified so that the text with
modified tokens results in a different label when classified,
as compared to the original text’s label. Both these meth-
ods methods require the gradient information for the unper-
turbed text when it is classified by the classifier to perturb the
text. In contrast, in (Gao et al. 2018), Gao et al. use a similar
idea, but instead of selecting words or characters to perturb
based on classifier-calculated gradients, they first rank words
in a piece of text to be perturbed based on a score assigned
to the word’s context, followed by changing the spelling of
the highest ranked words. Their technique is relevant when
the gradient information from the classifier might not be
readily available to perturb text, for example, in an online
classification service where the classifier can be accessed
only as a black box. Sethi and Kantardzic (Sethi and Kan-
tardzic 2018), also described black-box methods for gener-
ating adversarial numerical and text data while considering
budget limitations of the adversary in generating adversar-
ial data. Our work is complimentary to these gradient-based
and black-box approaches as it compares the effectiveness
of generating adversarial text by integrating gradient-based
methods with concepts used in budget-limited black-box
methods.

Adversarial Text Perturbation
One of the main functions of an adversary in an adversarial
learning setting is to generate, and possibly mislabel, adver-
sarial text to fool the classifier. Adversarial text is usually
generated by starting from valid text and changing certain
words or characters in it. This process is also referrred to
to as perturbing text. We define adversarial text perturba-
tion using the following formalization: Let V denote a vo-
cabulary of English words and X denote a corpus of En-
glish text. {Xi} ⊂ X denotes a dataset consisting of En-
glish text samples, where Xi denotes the i-th sample. Fur-
ther, Xi = (X

(1)
i , X

(2)
i , ..., X

(W )
i ), where X

(j)
i denotes the

j-th word in Xi and W is the maximum number of words
of a text sample. Each word X

(j)
i is represented by a feature

vector X(j)
i = f1:F generated using some word embedding

like word2Vec (Mikolov et al. 2013), Global Vector (GloVe)
(Pennington, Socher, and Manning 2014), or fastText (Joulin
et al. 2016), where F is the embedding space dimension.
Each sample Xi belongs to a class with label l ∈ L, where
L is a finite set of class labels. For notational convenience,
we assume that l = y(Xi), where y : X → L is a rela-



tion that ascertains ground truth label l for Xi. A classifier
C is also used to determine a label of Xi, the classifier’s
output is given by yC : X → L. We say that the classi-
fier classifies Xi correctly only when yC(Xi) = y(Xi). A
valid example Xi is perturbed by altering a subset of words
{X(j)

i } ∈ Xi using a perturbation strategy π. The perturba-
tion strategy π : X → X modifies the j-th word X

(j)
i to

word X̃
(j)
i ∈ V, 1 ≤ j ≤ W . Let nπ = |{X̃(j)

i }| denote
the number of words perturbed by the perturbation strategy
π and X̃i,nπ denote text Xi after perturbing nπ words in it.
Finally, let ∆ : X×X → [0, 1] denote a divergence measure
between two pieces of text with ∆(Xi, Xi) = 0. Within this
formalization, the objective of the adversary is to determine
a minimal perturbation n∗

π to Xi satisfying:

n∗
π = argnπ

min∆(Xi, X̃i,nπ )

s.t. yC(X̃i,nπ ) ̸= y(Xi),

and, yC(Xi) = y(Xi) (1)

The objective function in Equation 1 finds the number
of words to perturb that gives the minimum divergence be-
tween the original and perturbed text, while the last two con-
straints respectively ensure that the classifier mis-classifies
the perturbed text, X̃i,nπ , giving it a different label than the
ground truth y(Xi), but the classifier correctly classifies the
original text Xi. In the next section, we describe different
perturbation strategies we have used to perturb valid text and
generate adversarial text.

Perturbation Methods for Text Data

An adversarial perturbation method adds a certain amount of
noise to unperturbed data to generate perturbed data. There
are two main questions in a perturbation method: how much
noise to add, and where in the data to add the noise. For the
first question, the two types of perturbation methods, white-
box and black-box, both add a random, albeit small amount
of noise. But these two types of methods differ in their ap-
proach to answer the second question. Below, we describe
the white-box and black-box perturbation methods, and pro-
pose a gray-box method that combines the advantages of the
two.

White-box Gradient-based Perturbation. White-box
methods first query the classifier with the unperturbed text
and observe the gradient of the loss function of the classi-
fier’s output from the query for the different words in the
queried text. Because the loss function expresses the dif-
ference of the classifier’s determined label from the ground
truth label for the queried text, the word in the text that cor-
responds to the most negative gradient or change of the loss
function is most influential in changing the label for the text
determined by the classifier. This word is selected as the
word to perturb. Mathematically, the selected word, x∗, hav-
ing the most negative gradient is given by:

Figure 1: Example of white-box adversarial text generation via
perturbing words using gradient information. (Top): The gradient
of the loss function of the classifier from classifying original text
is available to the adversary. (Left): Adverary uses this information
to select and perturb two words from original text. (Bottom): The
perturbed text, when classified, yields a different label (’Person’)
than original text (’Company’).

x∗ = argmin
j

δL

δx(j)

= argmin
j

F∑
k=1

δfk
δx(j)

δL

δfk

= argmin
j

F∑
k=1

wj,k
δL

δfk
, (2)

where L is the loss function from the classifier, δL
δfk

is
the gradient of the loss function for the k-th feature of a
word, wj,k is the weight in the embedding layer neural net-
work connecting the j-th word to its k-th feature in embed-
ding space. x∗ is then perturbed by replacing it with x̃(j),
the word from the vocabulary that has the smallest positive
gradient of loss function, and, consequently, has the least in-
fluence in changing the label determined by the classifier.
Mathematically, x̃(j) is given by:

x̃(j) = argmin
j

∑
k

wj,k
δL

δfk
, s.t.

δL

δfk
> 0 (3)

The general schematic of the white-box gradient-based
perturbation is shown in Figure 1.



Black-box Perturbation In contrast to white-box meth-
ods, black-box methods select the perturbation position ran-
domly within unperturbed text. Consequently, black-box
methods could yield adversarial examples that are less ef-
fective in misguiding the classifier than white-box generated
examples. Below, we describe two black-box methods used
to perturb text.

• Black-box, Budget-Limited Perturbation (Anchor
Points). The anchor points (AP) method, proposed
in (Sethi and Kantardzic 2018), is prescribed when the ad-
versary has a limited budget and can send fewer queries to
the classifier. The adversary starts with a set of valid, un-
perturbed samples drawn randomly from the unperturbed
dataset. AP adversarial data generation proceeds in two
stages called exploration and exploitation, each with its
respective budget. In the exploration stage, the adversary
uses one unit of exploration budget to randomly select
one sample from the unperturbed set and and adds to it
a perturbation vector drawn from a normal distribution
N (0, R), where R ∈ [Rmin, Rmax) is a perturbation ra-
dius. The perturbed sample is sent as a query to the clas-
sifier and if it is categorized with the same label as the
original sample, it is retained as a candidate adversar-
ial example. The perturbation radius is adjusted propor-
tional to the fraction of candidate adversarial examples
and these steps are repeated until the exploration budget
is expended. During the exploit phase, the adversary cre-
ates an adversarial example by generating a convex com-
bination of a pair of randomly selected candidate adver-
sarial examples created during exploration phase. Gener-
ating each adversarial example consumes one unit of ad-
versary’s exploitation budget.

• Black-box, Budget-Lenient Peturbation (Reverse En-
gineering). The reverse engineering (RE) attack, also pro-
posed in (Sethi and Kantardzic 2018), is accomplished
once again in two stages called exploration and exploita-
tion. The adversary once again starts with a set of valid,
unperturbed samples drawn randomly from the unper-
turbed dataset. In the exploration stage, the adversary
trains its own stand-in classifier representing the real clas-
sifier. To get training data for its stand-in, it generates
sample adversarial data by generating a random vector in
a direction that is orthogonal to the difference vector be-
tween a pair of valid samples taken from the unperturbed
set. The adversarial example is generated by adding the
random vector and the average of the two valid samples
used to generate the random vector. The adversarial ex-
ample and its category obtained by sending the example
as a query to the classifier, are recorded as training data
and used to train the adversary’s stand-in classifier. In the
exploitation stage, the stand-in classifier is used to gener-
ate samples that are predicted by it to produce a desired
classification. The anchor points method described above
could be used for the exploitation stage. The reader is re-
ferred to (Sethi and Kantardzic 2018) further details about
the AP and RE algorithms.

Gray-box Perturbation Despite their limitation of gener-
ating less effective adversarial text, black-box methods can

0

500

1000

1500

2000

2500

3000

3500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.4 0.6 0.8 1

N
u

m
b

e
r 

o
f 

S
a

m
p

le
s

F
ra

c.
 o

f 
p

e
rt

u
rb

e
d

 e
x

a
m

p
le

s 
w

/ 
sa

m
e

 

la
b

e
l 

a
s 

u
n

p
e

rt
u

rb
e

d
 e

x
a

m
p

le
s

BLEU Score 10 words

1 word

20 words

30 words

Figure 2: Variation of the ratio of correct classifications for differ-
ent values of BLEU score of the perturbed text.

generate larger and more diverse set of adversarial examples
with fewer queries or probes to the classifier than white-box
methods. With this insight, we propose to combine white-
box and black-box methods into a gray-box method to in-
vestigate perturbation methods that can generate effective
yet diverse adversarial examples. In the gray-box method,
instead of drawing unperturbed samples for the black-box
methods randomly from the original dataset, we first use the
white-box method to generate a small seed set of perturbed
examples from samples that are randomly-drawn from the
original dataset. This seed set of perturbed examples is then
used to create a larger set of perturbed examples using the
AP and RE black-box methods.

Experimental Evaluation
Word Embedding and Classifier Network. We have eval-
uated our proposed techniques on the DBPedia dataset.
The dataset contains 700, 000 short articles extracted from
Wikipedia and categorized into 14 different categories. For
generating word embeddings from English words we have
used a widely used vector representation format called
Word2Vec (Mikolov et al. 2013). Word2Vec trains a neural
network on a vocabulary of 150, 000 English words, each
word in the vocabulary is given a unique one-hot identi-
fier. Word2Vec gives a feature vector in a 300-dimension
space for each word in the vocabulary. We have used a pub-
licly available, pre-trained Word2Vec model for generating
word embeddings for our experiments. Following recent re-
search (Yu et al. 2017) that showed that the prefix of a long
piece of text is important for determining its label, we have
assumed each query is limited to the first 40 words in the
text. Before sending a query text to the classifier, words in
the text are given a unique integer identifier, words not in the
vocabulary are given an id of zero. The classifier used for our
experiments is based on (Zhang and Wallace 2017)1. It uses
a deep neural network with three convolutional layers with
filter sizes of 3, 4, and 5 respectively. A rectified linear unit

1Code available at https://github.com/dennybritz/cnn-text-
classification-tf



(ReLU) activation function and max pooling are used with
each layer. The pooled outputs are combined by concatenat-
ing them followed by a dropout layer with keep probability
0.5. The output of the dropout layer is a probability distri-
bution indicating the confidence level of the classifier for
the query text over the different data categories. The cate-
gory with the maximum confidence level is output as the
category of the query text. The loss function used for calcu-
lating gradients of the inupt is implemented using softmax
cross entropy. The gradients are backpropagated through the
classifier’s network to calculate the gradients of the different
features at the input. The feature gradients are again back-
propagated through the Word2Vec network to calculate the
gradients of the words, as shown in Figure 1.

For evaluating the effectiveness of the perturbation tech-
nique we have used the Bilingual Evaluation Understudy
(BLEU) score (Papineni et al. 2002). BLEU is a widely used
evaluation metric for automated machine translation of text
and has recently been used to measure the difference be-
tween adversarially generated synthetic text with original
text (Zhang, Xu, and Li 2017). It compares the similarity
between a machine translation of text and a professional hu-
man translation without considering grammar or whether the
text makes sense. We have used BLEU-4 that scores sets of
four consecutive words, or 4-grams. When two pieces of text
are identical their BLEU score is 1.0, and as the dissimilarity
increases, the BLEU score approaches 0.

In our first experiment, we analyzed the effect of the
amount of perturbation of different text samples measured
in terms of BLEU score (x-axis) on the number of samples
that are assigned the same label before and after perturbation
(y-axis). Perturbed text was generated using the white-box
gradient-based method where the features of the words with
the most negative gradients, calculated using Equation 2,
were perturbed with a small random amount. The number of
words to perturb was varied over {1, 10, 20, 30}. For each
of these perturbation amounts, a batch of 1000 text samples
were perturbed, and results were averaged over 4 batches.
BLEU scores of perturbed text was binned into intervals of
0.1 by rounding each BLEU score to the first place of deci-
mal. Results shown in Figure 2, illustrate that as the BLEU
score decreases (perturbed text becomes more different from
the original text), the fraction of samples that retain the same
label before and after perturbation also decreases. This result
appears intuitive because the more different a piece of text
is from its original, unperturbed version, the less likely it is
to retain the same label. However, for BLUE score of 0.4
and lower, we observe that the fraction of samples retaining
the same label as the original slightly increases when 10 or
more words are perturbed. This is possibly due to the fact
that when the perturbed text is very different from the origi-
nal text, most of the perturbed words are out of context from
the original text and the text appears as nonsense to a human
reader. The machine classifier however is confounded into
labeling the nonsensical, perturbed text with the same label
as the original text, possibly due to one or more of the un-
perturbed words. Further investigation into this issue would
lead to a better understanding of the degree of perturbation
that converts text into rubbish for a human and possibly un-

intelligible for the machine classifier as well.
For our next set of experiments we analyzed the effect

of the main algorithm parameters in the AP and RE al-
gorithms, the maximum and minimum perturbation radii,
Rmin and Rmax on the amount of perturbation measured
in terms of BLEU score, and the fraction of samples that re-
tain the same label as the original. Results are shown in Fig-
ures 3 through 5. We observe that for both AP (Figure 3(a))
and RE (Figure 4(a)) algorithms, as the perturbation radius
increases, the BLEU score reduces, which corroborates the
fact that the degree of perturbation increases the divergence
between the original and perturbed text. Correspondingly,
the fraction of perturbed text that retains the same label as
the original text generally decreases with the increase in per-
turbation radius for both AP and RE, in Figure 3(b) and
Figure 4(b) respectively. Figure 5 shows the BLEU score
and fraction of samples that retain same label as the original
versus the number of words perturbed using the white-box
gradient-based approach, where the words with highest neg-
ative gradient were replaced with words with smallest posi-
tive gradient calculated using Equations 2 and 3. As before,
we observe that more perturbation results in lower BLEU
scores implying more divergent text after pertubation. More
perturbation also reduces the fraction of perturbed samples
that retain the same label as the original text.

Conclusions and Future Work
In this paper we investigated gray-box techniques for gen-
erating adversarial text as a combination of white-box
gradient-based techniques and black-box techniques. We
validated the correct behavior of the gray-box techniques in
generating perturbed text while showing that more perturba-
tion results in greater divergence as well as greater degree of
label-changes in the perturbed text with respect to the orig-
inal text. In the future, we plan to compare the proposed
gray-box adversarial text generation methods with GAN-
based and RNN-based synthetic text generation. While sin-
gle words are usually treated as the basic lexical unit, it
would be interesting to analyze how character-level pertur-
bations and word sequence or n-gram-level perturbations af-
fect adversarial text generation. We are also interested in get-
ting a better understanding of how to determine a critical or
minimal amount of perturbation that would be successful in
generating adversarial text. We envisage that this work and
its extensions will generate interesting results that would en-
able a better understanding and novel means for adversarial
text generation, and methods to make machine classifiers ro-
bust against adversarial text-based attacks.
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Figure 3: Variation of BLEU score (left) and fraction of perturbed examples that have same label as unperturbed text (right) for different
values of Rmin and Rmax using anchor points (AP) algorithm.
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Figure 4: Variation of BLEU score (left) and fraction of perturbed examples that have same label as unperturbed text (right) for different
values of Rmin and Rmax using reverse engineering (RE) algorithm.
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