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Abstract. To gain novel and valuable insights into the actual processes
executed within a company, process mining provides a variety of powerful
data-driven analyses techniques ranging from automatically discovering
process models to detecting and predicting bottlenecks, and process devi-
ations. On the one hand, recent breakthroughs in process mining resulted
in powerful techniques, encouraging organizations and business owners
to improve their processes through process mining. On the other hand,
there are great concerns about the use of highly sensitive event data.
Within an organization, it often suffices that analysts only see the ag-
gregated process mining results without being able to inspect individual
cases, events, and persons. When analysis is outsourced also the results
need to be encrypted to avoid confidentiality problems. Surprisingly, lit-
tle research has been done toward security methods and encryption tech-
niques for process mining. Therefore, in this paper, we introduce a novel
approach that allows us to hide confidential information in a controlled
manner while ensuring that the desired process mining results can still
be obtained. We provide a sample solution for process discovery and
evaluate it by applying a case study on a real-life event log.

Keywords: Responsible process mining · Confidentiality · Process dis-
covery · Directly follows graph

1 Introduction

Data science is changing the way we do business, socialize, conduct research, and
govern society. Data are collected on anything, at any time, and in any place.
Therefore, it is not surprising that many are concerned about the usage of such
data. The Responsible Data Science (RDS) [6] initiative focuses on four main
questions: (1) Data science without prejudice (How to avoid unfair conclusions
even if they are true?), (2) Data science without guesswork (How to answer
questions with a guaranteed level of accuracy?), (3) Data science that ensures
confidentiality (How to answer questions without revealing secrets?), and (4)
Data science that provides transparency (How to clarify answers such that they
become indisputable?). This paper focuses on the confidentiality problem (third
question) when applying process mining to event data.
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In recent years, process mining has emerged as a new field which bridges the
gap between data science and process science. Process mining uses event data
to provide novel insights [1]. The breakthroughs in process mining are truly
remarkable. Currently, over 25 commercial tools supporting process mining are
available (e.g., Celonis, Disco, Magnaview, QPR, etc.) illustrating the value of
event data [4]. However, existing tools and also the corresponding research rarely
considers confidentiality issues. Since the event logs used as a basis for process
mining often contain highly sensitive data, confidentiality is a major problem.

As we show in this paper, confidentiality in process mining cannot be achieved
by simply encrypting all data. Since people need to use and see process mining
results, the challenge is to retain as little information as possible while still being
able to have the same desired result. Here, the desired result is a process model
that can be used to check compliance and spot bottlenecks. The discovered
models based on encrypted event logs should be identical to the results obtained
for the original event data (assuming proper authorizations).

In this paper, we present a new approach to deal with confidentiality in pro-
cess mining. Selected parts of data will be encrypted or anonymized while also
keeping parts of the original event logs. For example, activity names remain
unchanged, but one cannot correlate events into end-to-end cases. The new ap-
proach is explained through a sample solution for process discovery based on a
framework for confidentiality. The framework allows us to derive the same results
from secure event logs when compared to the results from original event logs,
while unauthorized persons cannot access confidential information. In addition,
this framework provides a secure solution for process mining when processes are
cross-organizational.

The remainder of this paper is organized as follows. Section 2 outlines related
work and the problem background. In Section 3, we clarify process mining and
cryptography as preliminaries. In Section 4, the problem is explained in detail.
The new approach is introduced in Section 5. In Section 6 our evaluation is
described, and Section 7 concludes the paper.

2 Related Work

In both data science and information systems, confidentiality has been a topic of
interest in the last decade. In computer science, privacy-preserving algorithms
and methods in differential privacy have the closest similarity to confidentiality
in process mining. In sequential pattern mining, the field of data science most
closely related to process mining, there has been work on preserving privacy in
settings with distributed databases [9] or in cross-organizational settings [20].

The Process Mining Manifesto [5] also points out that privacy concerns
should be addressed. Although there have been a lot of breakthroughs in the
field of process mining ranging from data preprocessing [18], and process dis-
covery [16] to performance analysis [11], the research field confidentiality and
privacy has received relatively little attention.
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The topic of Responsible Process Mining (RPM) [2] has been put forward
by several authors thereby raising concerns related to fairness, accuracy, confi-
dentiality, and transparency. In [19] a method for securing event logs to be able
to do process discovery by Alpha algorithm has been proposed. In [8] a possible
approach toward a solution, allowing the outsourcing of process mining while
ensuring the confidentiality of dataset and processes, has been presented. In [13]
the authors has used a cross-organizational process discovery setting, where pub-
lic process model fragments are shared as safe intermediates. There are also a
few online guidelines [17].

3 Background

In this section, we briefly present the main concepts and refer the readers to
relevant literature.

3.1 Process Mining

The four basic types of process mining are; (1) process discovery, which is used
to learn a process model based on event data , (2) conformance checking, which
compares observed behavior and modeled behavior , (3) process reengineering,
used for improving or extending the process model , and (4) operational support,
providing warning, predictions, and/or recommendations. In this paper, we focus
on process discovery.

Events are the smallest data unit in process mining and occur when an
activity in a process is executed. In Table 1 each row indicates an event with
different attributes.

A trace is a sequence of events and represents for one instance how a process
is executed. E.g., candidate George (case 3) is first registered, then admitted.

An event log is a collection of sequences of events. There are process mining
algorithms that can use them as input. Event data are widely available in current
information systems [5].

As you can see in Table 1, “Timestamp” identifies the moment in time at
which an event has taken place, and “Case ID” is what all events in a trace have
in common so that they can be identified as part of that process instance. Event

Table 1: Sample event log (each row represents an event).
Case ID Event ID Timestamp Activity Candidate Cost

1 23 30-12-2010:11.02 Register Peter 50
1 24 30-12-2010:12.08 Check documents Peter 60
2 27 30-12-2010:13.16 Admit Anna 150
2 26 30-12-2010:16.03 Register Anna 50
1 25 30-12-2010:17.52 Admit Peter 100
3 28 30-12-2010:17.57 Register George 55
3 29 30-12-2010:18.19 Admit George 145
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logs can also include additional attributes for the events they record. There are
two main attribute types that fall under this category. “Event Attributes” which
are specific to an event, and “Case Attributes” which are ones that stay the same
throughout an entire trace.

A Directly Follows Graph (DFG) is a graph where the nodes represent
activities and the arcs represent causalities. Activities “a” and “b” are connected
when “a” is frequently followed by “b”. The weights of the arrows denote the
frequency of the relation [12]. Most commercial process mining tools use DFGs.
Unlike more advanced process discovery techniques (e.g., implemented in ProM),
DFGs can not express concurrency. The DFGs used in this paper also include
times, i.e., besides the frequencies also the average time that it takes to go from
one activity to another one is also included.

3.2 Cryptography

Cryptography or cryptology is about constructing and analyzing protocols that
prevent third parties or the public from reading private messages [7].

Cryptosystem is a suite of cryptographic algorithms needed to implement
a particular security service, most commonly for achieving confidentiality [10].
There are different kinds of cryptosystems. In this paper, we use the following
ones.

– Symmetric Cryptosystem: In symmetric systems, the same secret key is used
to encrypt and decrypt a message. Data manipulation in symmetric systems
is faster than asymmetric systems as they generally use shorter key lengths.
Advanced Encryption Standard (AES) is a symmetric encryption algorithm.

– Asymmetric Cryptosystem: Asymmetric systems use a public key to encrypt
a message and a private key to decrypt it or vice versa. Use of asymmetric
systems enhances the security of communication. Rivest-Shamir-Adleman
(RSA) is an asymmetric encryption algorithm.

– Deterministic Cryptosystem: A deterministic cryptosystem is a cryptosystem
which always produces the same ciphertext for a given plaintext and key,
even over separate executions of the encryption algorithm.

– Probabilistic Cryptosystem: A probabilistic cryptosystem as opposed to de-
terministic cryptosystem is a cryptosystem which uses randomness in an
encryption algorithm so that when encrypting the same plaintext several
times it will produce different ciphertexts.

– Homomorphic Cryptosystem: A homomorphic cryptosystem allows compu-
tation on ciphertext. E.g. Paillier is a partially homomorphic cryptosystem.

4 Problem Definition

To illustrate the challenge of confidentiality in process mining, we start this
section with an example. Consider Table 2 describing a totally encrypted event

6



log, belonging to surgeries in a hospital. Since we need to preserve difference to
find a sequence of activities for each case, discovering process model, and other
analyses like social network discovery, “Case ID”, “Activity”, and “Resource”
are encrypted based on a deterministic encryption method. Numerical data (i.e.,
“Timestamp” and “Cost”) are encrypted by a homomorphic encryption method
to be able to do basic mathematical computations. Now suppose that we have
background knowledge about surgeons and the approximate cost of different
types of surgeries and the question is whether this log is secure or not.

Owning to the fact that the “Cost” is encrypted by a homomorphic encryp-
tion method, the maximum value for the “Cost” is the real maximum cost and
based on the background knowledge we know that e.g., the most expensive event
in the hospital was the brain surgery by “Dr. Jone”, on “01/09/2018 at 12:00”,
and the patient name is “Judy”. Since “Case ID”, “Activity”, and “Resource”
are encrypted by a deterministic encryption method, we can replace all these
encrypted values with the corresponding plain values. Consequently, some part
of the encrypted data could be made visible without decryption. This example
clearly demonstrates that even when event logs are totally encrypted, given a
small fraction of contextual knowledge, data leakage is possible.

There are also some other techniques, which can be used to extract knowledge
from an encrypted event log, exploiting background knowledge and some specific
characteristics of the event log. In the following, we describe some of them.

– Exploring Order of Activities: in large processes, most cases follow a unique
path, which can cause data leakage by focusing on the order of activities [2].

– Frequency Mining: one can find the most or the less frequent activities and
simply replace the encrypted values with the real values based on a knowl-
edge about the frequency of activities.

– Exploring Position of Activities: limited information about the position of
activities in traces can lead to data leakage. E.g., in a hospital, one can easily
know that the first activity is registration.

These are just some examples to demonstrate that encryption alone is not a
solution. For example, in [14] it is shown that mobility traces are easily identifi-
able after encryption. Any approach which is based on just encrypting the whole
event log will have the following additional weaknesses:

– Encrypted Results: since results are encrypted, the data analyst is not able to
interpret the results. E.g., as data analyst we want to know which paths are

Table 2: An entirely encrypted event log.
Case ID Activity Resource Timestamp Cost

1ab Abc1dfg 0fgh14 123 5000
2cd Chf5jkl 024sdfk 125 6000
3ty 215sfs0 .543s1s 254 3500
1tu 2154@3 3242s2 248 2000
1za 321$22 02315d 157 5500
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the most frequent after “Registration” activity; how can we do this analysis
when we do not know which activity is “Registration”? The only solution is
decrypting results.

– Impossibility of Accuracy Evaluation: how can we make sure that a result of
the encrypted event log is the same as the result of the plain event log? The
only solution is decrypting the result of the encrypted event log.

Generally and as explored by [8], using cryptography is a resource consuming
activity, and decryption is even much more resource consuming than encryption.
These weaknesses demonstrate that it would be better if we could keep some
parts of a data as plain text even in the secure event log. However, the challenge
is to decide what should be kept in plain format and what not (encrypted or
removed), and how we should address the data leakage that may arise from the
plain data. In the next section, an approach is introduced, where we provide
some answers to this questions.

5 Approach

As mentioned, the approach is described based on a sample solution for process
discovery. In fact, the aim is to convert an event log to a secure event log such
that just authorized persons can have access to confidential data, process model
for the secure event log is the same as process model for the plain event log, and
the current process discovery techniques can be used with the secure event log.

Fig. 1 shows the scheme which has been depicted as a framework to provide
a solution for the above-mentioned purpose. This framework has been inspired
by [4], where abstractions are introduced as intermediate results for relating
models and logs. As can be seen in Fig. 1 three different environments and two
confidentiality solutions are presented.

– Forbidden Environment: In this environment, the actual information system
runs that needs to use the real data. The real event logs (EL) produced
by this environment contain a lot of valuable confidential information and
except some authorized persons no one can access this data.

– Internal Environment: This environment is just accessible by the authorized
stakeholders. A data analyst can be considered as an authorized stakeholder
and can access the internal event logs. Event logs in this environment are
partially secure, selected results produced in this environment (e.g., a process
model) are the same as the results produced in the forbidden environment,
and data analyst is able to interpret the results without decryption.

– External Environment: In this environment, unauthorized external persons
can access the data. Such environments may be used to provide the comput-
ing infrastructure dealing with large data sets (e.g., a cloud solution). Event
logs in this environment are entirely secure, and the results are encrypted.
Whenever data analyst wants to interpret the results, these results have to
be decrypted and converted to the internal version. Also, results from the
external environment do not need to be exactly the same as the results from
the internal environment.
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Fig. 1: The proposed framework for confidentiality in process mining.

5.1 Internal Confidentiality Solution (ICS)

For ICS we combine several methods and introduce the connector method,
where several techniques are utilized to create a new level of security. Fig. 2
gives an overview of the anonymization steps.

Filtering and Modifying The Input. The first step to effective anonymiza-
tion is preparing the data input. To filter the input, simple limits for frequencies
can be set, and during loading an event log all traces that do not reach the min-
imal frequencies are not transferred to the EL′. Attributes which are irrelevant
for analysis should be removed regardless of their sensitivity.

Choosing The Plain Data. As mentioned, we need to produce interpretable
results. Hence, some parts of event log remain as plain text in the internal version
of the secure event log (EL′). To make a process model based on EL′, we should
take a look at what information and/or structure is strictly necessary for dis-
covering a process model. Here there are different choices; however, we consider
the DFG, used by many discovery approaches, as an abstraction which relates
logs and models [4]. Therefore, Abstractions (i.e., AEL, AEL′, and AEL′′) are
DFGs.

If we have a DFG, then the process model can be made based on it. Therefore,
the next step is taking a look at what information and/or structure is necessary
to make a DFG. Since a DFG is a graph which shows the directly follows relation
between activities, we need activities as information to be plain, and we also need
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Fig. 2: The internal confidentiality solution.

a structure which can be used for extracting directly follows relations. Such a
structure should be embedded into EL′.

Encryption. Here there are two important choices. The first choice is which
columns of the event log should be encrypted. Second, we need to decide which
algorithms should be used. As can be seen in Fig. 3, for the internal environment,
we use Paillier as a good choice for numeric attributes (i.e. “Cost”) and AES for
other attributes (i.e. “Activity”).

Making Times Relative. Times need to be modified because keeping the
exact epoch time of an event can allow one to identify it. The naive approach, of
setting the starting time of every trace to 0, would make it impossible to replay
events and reconstruct the original log. Thus, we select another time that all
events are made relative to. This time can be kept secure along with the keys for
decryption. Fig. 3 shows a sample log after encrypting and making times relative
to the “30.12.2010:00.00”.

The Connector Method. Using the connector method we embed the struc-
ture, which can be used for extracting directly follows relations, into EL′. Also,
the connector method helps us to reconstruct the full original event logs when
keys and relative values are given. In the first step, the previous activity (“Prev.
Activity”) column is added in order of identifying which arcs can be directly
added to the directly follows graph later.

In the second step, we find a way to securely save the information contained
in the “Case ID”, without allowing it to link the events. This can be done
by giving each row a random ID (“ID”) and a previous ID (“PrevID”). These
uniquely identify the following event in a trace because the IDs are not generic
like activity names. The ID for start activities is always a number of zeros. Fig. 4
shows the log after adding “Prev. Activity” and “PrevID”.
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(a) The sample event log. (b) Encrypting resources and costs and
making times relative.

Fig. 3: The event log after encrypting and making times relative

In the third step, regarding the fact that these columns contain the same
information previously found in the “Case ID”, they have to be hidden and
secure. This can be done by concatenating the “ID” and “PrevID” of each row
and encrypting those using AES. Due to the nature of AES neither orders nor
sizes of the IDs can thus be inferred. The concatenation can be done in any style,
in this example, we however simply concatenate the “PrevID” behind the “ID”.
To retain the “ID” and “PrevID” one simply needs to decrypt the “Connector”
column and cut the resulting number in two equal parts. This method requires
that every time the two IDs differ by a factor 10 a zero must be added to
guarantee equal length. Fig. 5 shows the log after concatenating the ID columns
and encrypting them as a connector.

In the final step, we use the “Case ID” to anonymize the “Time tamp”. The
“Time tamp” attribute of events which have the same “Case ID” is made relative
to the preceded one. The exception is the first event of each trace which remains
unchanged. This allows the complete calculation of all durations of the arcs in a
directly follows graph but makes it complicated to identify events based on the
epoch times they occurred at. After creating the relative times, we are free to
delete the “Case ID” and randomize the order of all rows, ending up with an
unconnected log in Fig. 6.

Fig. 4: The event log after adding previous activities and previous IDs.
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(a) Concatenating ID and previous ID. (b) Encrypting the connector.

Fig. 5: The event log after concatenating IDs and encrypting the connector

Fig. 6 is internally secure event log (EL′), which can be used by a data
analyst to make DFG (AEL′) and PM ′. It is obvious that if process discovery
could have been done on the plain event log (EL), AEL would be identical to
AEL′ (i.e., both of them are the same DFG) and PM would be identical to
PM ′.

Comparing Fig. 6 and the original log (Fig. 3a), one can see that there is
no answer for the following questions in EL′ anymore: (1) What is the name of
a resource? (2) Who was responsible for doing an activity at exact time t? (3)
What is the sequence of activities which has been done for case c? (4) How long
did it take to process case c? (5) What is the cost of activity a which has been
done by resource r for case c?

However, it is still possible to answer the following question: Who is respon-
sible for activity a? In fact, EL′ is a partially secure version of event log in such
a way that contains the minimum level of information, which data analyst needs
to reach the result. Although ICS does not preserve the standard format of the
event log which is used by the current process discovery techniques, it provides
an intermediate input (i.e., a DFG), which can be used by the current tools. In
the External Confidentiality Solution (ECS), we need to avoid any form of data
leakage, i.e., the results do not need to be interpreted by the external party.

Fig. 6: The output event log after applying ICS
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5.2 External Confidentiality Solution (ECS)

In the external environment, the plain part of the event log may cause data
leakage. E.g., based on background knowledge, one with a little effort can extract
that who is responsible for “Registration”. Therefore, in ECS, we convert El′ to
the externally secure event log (EL′′) in such a way that it prevents an adversary
from extracting valuable information even by inference. In the following, our two-
steps ECS is explained.

Encrypting The Plain Part. In this step, activities are encrypted by a de-
terministic encryption method like AES. A deterministic encryption method has
to be used because for discovering a DFG or a process model, differences should
be preserved. Fig. 7 shows the result after encrypting activities.

However, after encrypting, detecting “START” activities seem to be impos-
sible, and without detecting them, extracting the relations is not possible. For
identifying the “START” activities, we can go through the “Activity” and “Prev.
Activity” columns, the activities which are appeared in the “Prev. Activity” col-
umn but not appeared in the “Activity” column are the “START” activities.

Fortifying Encryption and/or Projecting Event Logs. In our sample, re-
sources are encrypted by a deterministic encryption method (AES-ECB), and
costs are encrypted by homomorphic encryption, which preserves differences.
Consequently, by comparison, one can find the minimum and maximum cost,
which can be used as knowledge for extracting confidential information (e.g.
name of resource). In order to decrease the effect of such analyses, fortifying
encryption and/or projecting event logs could be done. E.g., resources can be
encrypted by a probabilistic encryption (e.g. AES-CTR), and costs can be re-
moved. In fact, all attributes not needed for process discovery can be removed.

6 Evaluation

We consider three evaluation criteria for the proposed approach while perfor-
mance is also taken into account.

Fig. 7: The event log after encrypting activities
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– Ensuring Confidentiality: as explained in Section 5, we can increase the
level of confidentiality by defining different environments an indicating level
of information which is accessible by each environment. In addition, using
multiple encryption methods and our connector method for disassociating
events from their cases improve confidentiality.

– Providing Reversibility: when the keys and the value used for making times
relative are given, both ICS and ECS are reversible, which means that
transparency is addressed by the proposed approach.

– Proving Accuracy: to prove the accuracy of our approach, by a case study we
show that DFG of the original event log (AEL) and DFG of the secure event
logs (i.e., AEL′ and AEL′′) are the same, and consequently corresponding
process models are similar.

6.1 Proving Accuracy

As can be seen in Fig. 1, to prove accuracy, we need to show that the abstraction
of the original event log is the same as the abstraction of the internal event
log (AEL = AEL′) (rule (1)), and also the abstraction of the internal event
log is the same as the abstraction of the external event log, which is encrypted
(AEL′ = ECS−1(AEL′′)) (rule (2)). For this purpose, we have implemented four
plugins for ProM including; “ICS”, “ECS”, “DFG from secure logs”, and “DFG
from regular logs”. “ICS” is used for converting an event log in regular XES
format to the internal version of secure event log, “ECS” is used for converting
internal version of secure event log to the external version of secure event log,
“DFG creator from secure logs” is able to make a DFG based on the secure
version of event log, and “DFG creator from regular logs” is used to make a
DFG from regular XES log. These plugins have been used along with a case
study of real life logs to prove the accuracy. In summary:

AEL = AEL′ ⇒ PM = PM ′ (1)

AEL′ = ECS−1(AEL′′)⇒ PM ′ ≈ ECS−1(PM ′′) (2)

6.2 Case Study: Real Life Log of Sepsis Patients

The real-life event log for a group of sepsis patients in a hospital [15], containing
1050 cases, 15214 events, and 16 event classes, is used to prove the accuracy.

In the first step, EL′, and EL′′ have been created by “ICS”, and “ECS”
plugins respectively. Then, to verify that AEL is identical to AEL′, “DFG from
Regular Logs” and “DFG from Secure Logs” have been used to produce cor-
responding DFGs. The resulting DFGs were exactly the same. Because of the
space limitations, we are not able to show them. Finally, to prove that AEL′

is the same as AEL′′, where activities are encrypted, we have used “DFG from
Secure Logs” plugin. To be able to take a closer look at the AEL′ and AEL′′,
in Fig. 8, we have zoomed in both of them and highlighted a specific path from
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(a) A part of the plain DFG (b) A part of the encrypted DFG

Fig. 8: Comparing DFG from EL′ with DFG from EL′′: both graphs are iden-
tical, modulo renaming and layout differences

“ER Registration” to “ER Sepsis Triage”. As can be seen in Fig. 8, both AEL′

and AEL′′ show the same relation between these two activities. The frequency
of this relation is 11 and the average time is 0.06 (f=11, t=0.06). In addition,
this figure shows that “ER Registration” has no real input link, and “ER Sepsis
Triage” has ten input links and eight output links.

6.3 Performance

Fig. 9 shows how the application scales when using benchmarking event logs
[3] and increasing the number of events exponentially. All runtimes have been
tested using an Intel i7 Processor with 1.8GHz and 16 GB RAM. The darker
bars show the execution time of the “DFG from regular logs”, and the lighter
bars show the execution time of the “DFG from the secure logs”. We see a linear
increase of the runtime in milliseconds when adding choices or loops.

7 Conclusions

This paper presented a novel approach to ensure confidentiality in process min-
ing. We demonstrated that confidentiality in process mining can not be achieved
by only encrypting the whole event log. We discussed the few related works,
most of which use just encryption, and explained their weaknesses. Moreover,
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(a) Exec. time for choice loop events (b) Exec. time for sequence loop events

Fig. 9: Scaling the program to larger event logs

we elaborated on the open challenges in this research area. The new approach
is introduced based on the fact that there always exist a trade-off between con-
fidentiality and data utility. Therefore, we reasoned backwards from the desired
results and how they can be obtained with as little data as possible.

Here, the desired result was a process model and the solution presented by
introducing a framework for confidentiality that can be extended to include
other forms of process mining, e.g., conformance checking, performance analysis,
social network analysis, etc. (i.e., different ICS and ECS could be explored
for different process mining activities). A new method named “Connector” has
been introduced, which can be employed in any situation in which we need to
store some associations securely. For evaluating the proposed approach, four
plugins have been implemented and a real-life log was used as a case study. The
approach is tailored towards the discovery of the directly follows graph. Also,
the framework could be utilized in cross-organizational context such that each
environment could cover specific constraints and authorizations of a party.
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