
Accountability and Responsibility in Business Processes
via Agent Technology

Matteo Baldoni[0000-0002-9294-0408] (B), Cristina Baroglio[0000-0002-2070-0616],
Roberto Micalizio[0000-0001-9336-0651], and Stefano Tedeschi[0000-0002-9861-390X]

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)
firstname.lastname@unito.it

Abstract. Business processes are widely used to capture how a service is real-
ized or a product is delivered by a set of combined tasks. It is a recommended
practice to implement a business goal through a single business process; in many
cases, however, this is impossible or it is not efficient. The choice is, then, to split
the process into a number of interacting processes. In order to realize this kind of
solution, the business goal is broken up and distributed through many “actors”,
who will depend on one another in carrying out their tasks. We explain, in this
work, some weaknesses that emerge in this picture, and also how they would
be overcome by introducing an explicit representation of responsibilities and ac-
countabilities. We rely, as a running example, on the Hiring Process as described
by Silver in [30].

Keywords: Accountability · Responsibility · BPM · MAS.

1 Introduction

Business processes are the backbone upon which enterprises rely to accomplish their
business mission. A business process can be defined as “a set of activities that are per-
formed in coordination in an organizational and technical environment. These activities
jointly realize a business goal.” [36] It is thus not surprising that, over the last decades,
many attempts of formally specifying business processes were proposed in literature.
Some of these formalisms, such as BPMN, BPEL, Petri Nets, are procedural in nature
and hence specify the steps (i.e., activities) that bring to the satisfaction of an initial re-
quest. Other approaches, such as DECLARE [24] and ConDec [23], specify a process
declaratively by making explicit the relationships between tasks in terms of (temporal)
constraints. All these formalisms place the concept of business activity (i.e., task) at the
core of the process representation.

We think, however, that such a perspective is inadequate for capturing the relation-
ships that exist between the actors that participate into a process, especially when the
process is distributed. The most obvious scenario is in cross-organizational business
processes, where different enterprises cooperate for the achievement of their business
goals. In such a case, it is not possible to specify the cross-organizational process en-
tirely because the inner processes of an enterprise (and hence its activities) are usually

hidden to its partners. A common solution is, thus, to rely on choreographies. Never-
theless, the opacity of the actual processes raises several issues about the compliance
verification and the localization of flaws when something unexpected occurs. Chore-
ographies are not sufficient to explicitly capture neither the responsibilities that an en-
terprise takes, nor the (legitimate) expectations each enterprise has on the others. To
complicate the picture, a business process could be distributed and assigned to different
actors even inside a single organization.

In this paper we claim that when business processes are by their nature distributed,
a modeler should be equipped with proper abstractions for capturing relationships be-
tween the actors (or business roles), and not only between the process activities. These
relationships should be based upon two fundamental concepts in human organizations:
responsibility and accountability. The two terms are strictly related, and often used in-
terchangeably in the literature, but in our perspective they assume distinct meaning and
purpose. Responsibility, in particular, can assume several nuances depending on the
reference context [25]. As we will explain –see also the information model described
in [5]–, accountability is characterized by two fundamental facets: the legitimate ex-
pectation that an actor has on the behavior of another actor; and the control over the
condition for which one is held to account. The intuitive meaning, here, is that an actor
declares (or accepts) to be accountable for some condition when it has the capability
of bringing about that condition on its own, or when it holds others to account for that
same condition. In both cases the actor has control over the condition – direct in the
former case, indirect in the latter. Indeed, an actor, who can hold another to account, is
empowered of a form of authority, which gives it the right of asking the second actor an
account of its actions about a condition of interest. Accountability, thus, plays a twofold
role. On the one side, it is the instrument through which responsibilities are discharged
[16]. On the other side, it is the trigger that makes interactions progress as agents tend
to discharge their duties lest being sanctioned.

Moreover, we claim that approaches and technologies from the research area on
multiagent systems (MAS) can be very helpful to realize this vision, finding direct ap-
plication in the business processes research field. In order to explain our proposal, we
rely on a reference example, whose first specification can be found in [7].

In Section 2 we introduce a motivating example expressed in BPMN. Then, in Sec-
tion 3 we provide a characterization of accountability and responsibility. The following
sections provide an accountability-based representation of the example and a descrip-
tion of an implementation.

2 A Motivating Example

As a motivating and running example we will use the Hiring Process scenario intro-
duced by Silver [30] to exemplify the challenges of the one-to-many pattern. Suppose
a case consisting of one open job position; the goal is to hire a new employee for that
job. Many candidates will likely apply. As long as the position remains open, each in-
terested candidate walks through an evaluation process, that may take some time to be
completed. When a candidate is deemed apt for the position, the job is assigned and
the position is closed. Silver explains how such a procedure cannot be modeled as a

Figure 8-3 A common beginner mistake

Ap
pl

ic
an

t

Post job

Receive
application

Screen and
interview Make offer

Ap
pl

ic
an

t

Post job Make offer

Process
applications

Receive
application

Screen and
interview

Until ready to
make offer

Ap
pl

ic
an

t

Post job Make offer

Until 5 viable

InterviewReceive and
Screen

Ap
pl

ic
an

t
Ev

al
ua

te
 C

an
di

da
te

Evaluate Candidate

Receive
resume

Check job
status

Open?

Screen and
interview

Position
closed

Make offer?

Rejected

Make offer
Accept? Accepted

Offer rejected

Cancel
Evaluation

H
ir

in
g

Pr
oc

es
s

Hiring Process

Post job

3 months

Receive acceptance

Update job
status Filled

Update job
status

Abandoned

Position filled

Position unfilled

Signal cancels in-
fight instances of
Evaluate
Candidate

Job status

Ap
pl

ic
at

io
n

Re
je

ct
io

n
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Ap
pl

ic
at

io
n

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Re
je

ct
io

n
no

tic
e

In
te

rv
ie

w
 in

vi
ta

tio
n

O
ff

er

O
ff

er
 r

es
po

ns
e

Rejection noticeAp
pl

ic
at

io
n

Re
su

m
e

yes

no

Po
si

tio
n

cl
os

ed

Re
je

ct
io

n
no

tic
e

yes

O
ff

er

no

Re
sp

on
se

yes

no

Po
si

tio
n

cl
os

ed

Acceptance

Fig. 1. The Hiring Process example: correct solution.

single BPMN process since, inherently, the activities managing the candidates (e.g., ac-
cepting and processing their applications), have a different multiplicity than the activity
managing the position, which is only one.

In order to deal with many candidates for a single job, so as to meet the goal, Sil-
ver suggests the adoption of two distinct BPMN processes, that, although potentially
performed by the same people, are formally represented in two separate pools since in-
dependent processes. These two processes are: the Hiring Process, that manages the job
position by opening and assigning it, and the Evaluate Candidate process, which ex-
amines one candidate. The two processes are represented in independent pools because
their respective instances do not have a 1:1 correspondence: the hiring process runs
just once for a position, whereas the evaluation process runs for each candidate who
shows up for the job. Possibly, many instances of this process run in parallel depend-
ing on the number of available evaluators. A coordination problem now rises because,
as soon as one of the candidates fills the position, all the evaluations still in progress
must be stopped. The Evaluate Candidate processes, thus, although processing different
candidate applications, are all synchronized on the status of the position. Such a syn-
chronization can only be guaranteed by introducing a data storage (Figure 1), external
to the processes and accessible to all of them.

This simple yet meaningful example shows how business processes could be dis-
tributed even within a single organization. Moreover, the example offers also the op-
portunity to emphasize the drawbacks of an activity-centric representation, like BPMN.
In fact, the relationships between the three actors are just loosely modeled via message
exchange, but there is no explicit representation of the responsibilities each of them
takes as a party of the interaction. For instance, the relationship between the candidate
and her evaluator is emblematic: when the evaluator makes an offer to the candidate,

the evaluator expects an answer (either acceptance or rejection), but since the internal
process of the candidate is hidden, we cannot give for granted that the candidate will
answer. The candidate’s process could be ill-defined and never answer to an offer, or, by
choice, the candidate’s process designer could have decided that an answer is provided
only in the positive case, and not always as the evaluator expects to. It follows that when
the candidate does not answer, the evaluator’s process gets stuck indefinitely. What is
actually missing, thus, is an explicit declaration from each party of the interaction, that
they are aware of their duties and of the relationships they have with others. However,
to support such declarations, duties and relationships have to be modeled explicitly. We
believe that the notions of responsibility and accountability serve this purpose in an
intuitive, yet effective way, and in the rest of the paper we discuss how to achieve this
result.

3 Responsibility and Accountability in MAS

In this section, we characterize the concepts of responsibility and of accountability as
they were introduced for multiagent systems [16, 5, 2], that is, in a way that is functional
to its use in supporting the functioning of an agent system.

Concerning responsibility, Feltus [16] sees it as a charge, concerning a unique busi-
ness task, assigned to an agent, which is always linked at least to one accountability.
This view is compatible with the triangle model of responsibility by Schlenke et al.
[29], according to which the term bears two main understandings, each of which inves-
tigated at depth by philosophers: one amounting to causation (who did it?), the other
to answerability (who deserves positive or negative treatment because of the event?).
Schlenke et al. explain how responsibility, as individuals perceive it, depends on the
strength of three linkages, each of which involves two out of three basic elements, that
are prescriptions, events, and identities. Prescriptions come from regulative knowledge
and (broadly speaking) concern what should be done or avoided. Events simply occur
in the environment. Identities include but are not limited to roles of the individual that
are relevant in the context. The three linkages, thus, respectively capture whether and
to which extent: a prescription is considered to concern an event, an event is considered
relevant for an identity, a prescription is considered to concern an identity.

Accountability [5, 2], instead, is understood as representing the simple concept of
one agent holding another to account for its actions, both “good” and “bad.” In partic-
ular, the focus is on on agents that are expected to act in a certain way, and that will
be held to account for that expectation’s fulfillment (sometimes called positive accon-
tability). From this definition, we identify two integral pieces to accountability: 1) a
relationship between two entities in which one feels a liability to account for his/her
actions to the other; and 2) a process of accounting in which actions are declared, eval-
uated, and scored. Accountability has distinctive traits which do not allow making it a
special kind of responsibility. First of all it involves two agents, the one who gives the
account and the one who takes the account [29, 21, 26, 9]. The account taker must have
some kind of authority on the account giver [28, 12]. The origin of such an authority
may be various; for instance, it may be due to a principal-agent relationship, or to a del-
egation. The account taker is sometimes called the forum [9]. Accountability may also

involve a sanction, as a social consequence of the account giver’s achievement or non-
achievement of what expected, and of its providing or not providing an account [16].
We now report from [5] the key aspects of accountability, that we rely upon together
with the reference literature:

a) Accountability implies agency. If a principal does not possess the qualities to act
“autonomously, interactively and adaptively,” i.e. with agency, there is no reason to
speak of accountability, for the agent would be but a tool, and a tool cannot be held
accountable [31].

b) Accountability requires but is not limited to causal significance. The plain physical
causation (also called scientific causation in [29]), that does not involve awareness
or choice, does not even create a responsibility, let aside accountability. This view
is supported also by [9, 10].

c) Accountability does not hinder autonomy. Indeed, accountability makes sense be-
cause of autonomy in deliberation [1, 29, 34, 10].

d) Accountability requires observability. In order to make correct judgments, a forum
must be able to observe the necessary relevant information. However, in order to
maintain modularity, a forum should not observe beyond its scope. For example, if
a principal buys a product and the product is faulty, that principal holds the factory
as a whole accountable. The factory, in turn, holds one of its members accountable
for shoddy production. In other words, accountability determination is strictly re-
lated to a precise context. In each context, the forum must be able to observe events
and/or actions strictly contained in its scope and decipher accountability accord-
ingly. As context changes, accountability will change accordingly. For this reason,
a mechanism to compose different contexts and decide accountability comprehen-
sively is essential.

e) Accountability requires control. Without control decisions cannot be enacted, the
agent does not have an impact on the situation. It will be ineffectual. In [20], control
is defined as the capability, possibly distributed among agents, of bringing about
events. Due to our focus on positive accountability, i.e. on bringing about a situ-
ation of interest, we follow this proposal and interpret omissions (not acting) as
non-achievements. [13] gives a slightly different definition of control as the abil-
ity of an agent to maintain the truth value of a given state of affairs. Alternatives
where control amounts to interference or constraint can be devised but are related
to negative accountability.

f) Accountability requires a mutually held expectation. Accountability is a directed
social relationship concerning a behavior, that serves the purposes of sense-making
and coordination in a group of interacting parties, sharing an agreement on how
things should be done [17]. The role of expectation is widely recognized [17, 34, 1].
Both parties must be aware of such a relationship for it to have value (the account-
taker to know when it has the right to ask for an account, the account giver to know
when towards whom it is liable in case of request).

g) Accountability is rights-driven. One is held accountable by another who, in the
context, has the claim-right to ask for the account. Particularly relevant on this
aspect the understanding of accountability that is drawn in tort law [12], where the
account-taker is the only recognized authority who can ask for an account, and the

account-giver has a liability towards the account-taker (to explain when requested).
Further analysis is carried out in [18].

In the following we use the notations A(x, y, r, u) and R(x, q) in order to explicitly
represent accountabilities and responsibility assumptions, respectively. By A(x, y, r, u)
we express that x, the account-giver, is accountable towards y, the account-taker, for
the condition u when the condition r (context) holds. If we think of a process being
collectively executed, we can say that when the r part of the process is done, then x
becomes accountable of the u part. When u is true, x is considered to have satisfied the
expectation that was put on it by exercising its control, which means that it has built
a proof that can be supplied to the account-taker. A proof here is intended as a set of
recorded facts, that demonstrate the achievement of the specified condition. Indeed, the
account-taker can ask at any time for a proof to the account-giver, provided that r is
true (in this case the accountability is detached). Such a proof of the partial execution
will amount to the set of facts collected that far. Along with the execution, expectation
and control will evolve and will run out with the satisfaction of the accountability, and
only the final proof will be left. When, instead, u is false, the expectation is violated,
and x’s control failed. When r is false, instead, the accountability expires. This means
that those conditions, by which the account-taker has the right of asking for an account
to the account-giver, will not hold anymore; thus, there is no expectation about u and
the account-taker may even lose its control over u. Instead, by R(x, q) we capture the
responsibility assumption by x of the expression q. When q is true the responsibility
is fulfilled, when it is false, it is neglected. When needed, we will denote by A a set
of accountabilities, calling it an accountability specification, and by R a responsibility
distribution, that is a set of responsibility assumptions.

Following [5, 2], where it is possible to find the technical details, A(x, y, r, u) is
grounded on control and expectation. While expectation is naturally conveyed with the
accountability itself, the control needs to be recursively verified on the structure of
u. In fact, x controls u either directly or indirectly by relying on accountabilities by
other parties. In words, we say that an accountability specification is closed when the
account-giver displays the necessary control (see definition of accoutnability closure in
[2]). Notice that an agent x “having control” does not mean the agent has itself the abil-
ity of making a condition become true in any circumstance, but that x has the possibility
of realizing it. Moreover, the control relation on atomic expressions cannot be checked
from the accountability specification only. The check depends on the responsibility as-
sumption by the agent who has adopted the role.

Responsibility assumptions in R describe which duties agents take on when playing
some roles inside an organization. From an organization designer’s perspective, such
duties would be captured in the simplest case through norm specification, or, in a richer
form, norms would be complemented with requirements the agents have to comply with
for adopting roles concerned by the norms. Still, this is on the organization side. On the
agent side, obligations (per se) are received by fiat; following [15], they succeed in
directing individual behavior only when they agree with the sensitivity of the individ-
uals. Consequently, the design shows a weakness, that is due to a lack of explicit (and
explicitly accepted) relationships. Our proposal fills this design gap through explicitly
declared/taken responsibility assumptions and accountability relationships, which give

agents the means for reasoning about the implications of role enactment, and give de-
signers the means for specifying organizations that show good properties [2].

For a normative organization to function well, its agents should interiorize the norms
in their behavior but when can this happen in open organizations? If the agent considers
a norm (say, an obligation) as a prescription concerning one of its identities (i.e., one of
the roles it plays in the organization having that norm) the norm would start being some-
thing more than “given by fiat”. In our proposal this can be done because, even though
here we do not focus on the process, R can be derived from the organization norms; in
some case, the norm specification could even reduce to the specification of the respon-
sibility distribution – which duties are up to which roles. That would not, however, be
enough if the same agent cannot see the connection between the prescription and some
events it concerns (in our setting, the prescription would apply in a context), and also
between the event and the identified identity (the context as one in which the role has
control over something). It is the co-presence of the three linkages (1) to create in the
agent the urge to tackle that context, abiding by the prescription, by virtue of its role,
should the prescription apply; (2) that helps the designer to create organizations where
role specification and goal distribution combine well.

4 Responsibility and Accountability in the One-to-Many Pattern

In this section we exemplify in the hiring process scenario how the notions of account-
ability and responsibility can be used to specify the interaction between the three in-
volved roles.

4.1 Precedence Logic

As a first step, it is necessary to provide a language for expressing conditions, and sub-
processes, that are ascribed as responsibilities to the roles, and that are used as condi-
tions in the specification of accountabilities. To this aim, we rely upon precedence logic
[33], an event-based linear temporal logic devised for modeling and reasoning about
Web service composition. The interpretation of such a logic deals with occurrences of
events along runs (i.e., sequence of instanced events). Event occurrences are assumed
to be non-repeating and persistent: once an event has occurred, it has occurred forever.
The logic has three primary operators: ‘∨’ (choice), ‘∧’ (concurrence), and ‘·’ (before).
The before operator allows constraining the order with which two events must occur,
e.g., a · b means that a must occur before b, but the two events do not need to occur
one immediately after the other. Such a language, thus, allows us to model complex
expressions, whose execution needs to be coordinated as they are under the responsi-
bility of different agents. Let e be an event. Then e, the complement of e, is also an
event. Initially, neither e nor e hold. On any run, either e or e may occur, not both. Intu-
itively, complementary events allow specifying situations in which an expected event e
does not occur, either because of the occurrence of an opposite event, or because of the
expiration of a time deadline.

We also rely on the notion of residuation, inspired by [20, 33]. Residuation allows
tracking the progression of temporal logic expressions, hopefully arriving to their sat-
isfaction, i.e., the completion of their execution. The residual of a temporal expression

q with respect to an event e, denoted as q/e, is the remainder temporal expression that
would be left over when e occurs, and whose satisfaction would guarantee the satisfac-
tion of the original temporal expression q. Residual can be calculated by means of a set
of rewrite rules. The following equations are due to Singh [33, 20]. Here, r is a sequence
expression, and e is an event or>. Below, Γu is the set of literals and their complements
mentioned in u. Thus, for instance, Γe = {e, e} = Γe and Γe·f = {e, e, f, f}.

0/e
.
= 0 >/e .

= > (r ∧ u)/e .
= ((r/e) ∧ (u/e))

(r ∨ u)/e .
= ((r/e) ∨ (u/e)) (e · r)/e .

= r, if e 6∈ Γr r/e
.
= r, if e 6∈ Γr

(e′ · r)/e .
= 0, if e ∈ Γr (e · r)/e .

= 0

Using the terminology in [4], we say that an event e is relevant to a temporal ex-
pression p if that event is involved in p, i.e. p/e 6≡ p. Let us denote by e a sequence
e1, e2, . . . , en of events. We extend the notion of residual of a temporal expression q to
a sequence of events e as follows: q/e = (. . . ((q/e1)/e2)/ . . .)/en. If q/e ≡ > and
all events in e are relevant to q, we say that the sequence e is an actualization of the
temporal expression q (denoted by q̂).

4.2 Hiring Process Specification

In the hiring process scenario, it is quite natural to individuate three roles: the hirer,
the evaluator, and the candidate. For each available position, then, there will be just
one actor hi playing the hirer role, whereas many evaluators and candidates will be
admissible. To simplify the exposition, we will assume that a candidate i will be eval-
uated by a specific evaluator evi; this does not exclude, however, that the same actor
be an evaluator for different candidates. Namely, evi and i are role instances of roles
evaluator and candidate, respectively. The first step of the hiring process specification
is to identify the responsibility distribution Rhiring, namely, what responsibilities are
ascribed to each role. In our solution we have the following responsibility assignments:
R(hi, fill position) we denote that the hirer is in charge of fulfilling the objective fill
position, whereas R(evi, evaluate candidate) denotes that evaluator evi is in charge of
the evaluation of a single candidate, finally, with R(i, follow-through application) we
specify that every candidate has the objective to complete its application process. Note
that fill position, evaluate candidate, and follow-through application are shortcut labels
standing for temporal expressions encoding the business processes. In the following, the
events of these processes are under the responsibility of the role indicated as a subscript.

Each responsibility is, then, characterized by a set of accountabilities describing
how a role player can fulfill that responsibility. The accountability specification Ahiring

for the hiring process is shown in Figure 2. It is interesting to study first the accountabil-
ities that each evaluator evi assumes having part of the responsibilities over the goal.
These accountabilities derive directly from the Evaluate Candidate process in Figure 1,
which describes the procedure an evaluator is expected to follow. Roughly speaking, the
hirer expects that the evaluator be compliant with the evaluation process (e.g., always
perform Screen and Interview before a Make Offer). Moreover, the evaluator should
interrupt the evaluation as soon as the position is assigned. On the other hand, a candi-
date submitting an application expects from an evaluator to be answered, either with a

a1 : A(evi, hi, post-jobhi · applyi, post-jobhi · applyi · evaluate-candidate evi)

evaluate-candidateevi ≡ position-filledhi ·msg-position-closedevi
∨

check-positionevi
·msg-position-closedevi

∨
(check-positionevi

· screen-interviewevi ·
(msg-rejection-noticeevi ∨make-offerevi ·
(response-yesi · acceptedevi

∨ response-noi · offer-rejectedevi
)))

a2 : A(evi, i, post-jobhi · applyi, post-jobhi · applyi · inform-outcomeevi)
inform-outcomeevi ≡ msg-position-closedevi

∨msg-rejection-noticeevi ∨make-offerevi .

a3 : A(hi, evi, acceptedevj
, acceptedevj

· position-filledhi), where evi 6= evj .

a4 : A(i, evi,make-offerevi ,make-offerevi ·(response-yesi ∨ response-noi))

a5 : A(hi, boss, open-positionboss, open-positionboss · post-jobhi)

a6 : A(hi, boss, post-jobhi ·(acceptedevi
∨ timeout 3monthshi), hiringhi)

hiringhi ≡ post-jobhi ·(acceptedevi
· position-filledhi

∨ timeout 3monthshi · position-abandonedhi)

Fig. 2. The accountability specification Ahiring for the Hiring Process scenario.

notification of rejection, or with a message of position filled, or possibly with an offer.
All these considerations bring us to characterize R(evi, evaluate candidate) with the ac-
countability relationships a1 and a2. Each event occurring in the expressions is adorned,
as subscript, with the role that brings it about. Intuitively, accountability a1 means that
evaluator evi is accountable towards hirer hi for evaluating a candidate i, but only in the
context where hirer has posted a position (post-jobhi) and candidate i has applied for
the position (applyi), to guarantee this strict ordering, the sequence post-jobhi · applyi
appears both as the antecedent condition and as a prefix of the consequent condition,
preceding the candidate evaluation. The same pattern is used throughout the subsequent
relationships. The evaluation is encoded as the sequence of events that may occur during
an evaluation according to the Evaluate Candidate process in Figure 1.

Accountability a2 represents the expectation candidate i has on evi: in the context
in which a job is posted and candidate i has applied for it, evi is expected to inform i
with the outcome of the evaluation process, this can either be, a message with content
“position closed”, a rejection notification, or an offer for the job.

It is important to observe that, according to the definition of accountability closure
[2], the accountability relationships are closed when the a-giver has the control (pos-
sibly indirect) over the consequent condition. Under this respect, a1 is not properly
founded since there are events in expression evaluate-candidateevi that are not gener-
ated by evi. First of all, event position-filledhi occurs when the hirer has assigned the
position, in this case the evaluation process carried on by evi has to terminate by in-
forming the candidate that the position is no longer available (msg-position-closedevi

).
To grant evi control over this event, thus, R(hi, fill position) must be characterized by

accountability a3, which states that hi is accountable towards every evaluator evi still
processing a candidate that, as soon as the position gets filled due to the acceptance
event coming from an evaluator evj , hi will notify this change (position-filledhi). In
other words, notifying that the position has been assigned is part of the responsibilities
of the hirer role.

More critically, also the events response-yesi and response-noi are not under the
control of evi. In case of an offer made to candidate i, evi awaits an answer, either
response-yesi or response-noi, from i. However, the candidate could never answer, and
if this happened, the error would be ascribed to the evaluator for not having completed
its process, rather than to the candidate for not having answered. Noticeably, this is
exactly the scenario modeled in the BPMN processes in Figure 1. In fact, the BPMN
model does not specify the internal process of the candidate, thus there is no guar-
antee that the candidate will ever answer to the evaluator’s offer. The lack of proper
abstractions for explicitly modeling interactions at the goal level, rather than just at
the data level via message exchanges, makes the overall system fragile to unexpected
conditions. We properly handle this issue thanks to the notions of expectation and con-
trol characterizing the accountability relationships. Since every accountability must be
grounded over control, the engineer makes a1 closed by associating accountability a4
to R(i, follow-through application). a4 means that candidate i is accountable towards
evi for answering either response-yesi or response-noi in case it receives an offer from
evi. This correctly captures the expectation of evi to receive an answer, and enables evi
to control (even indirectly) all the events in the consequent condition of a1.

Since a business goal, put in a context, is usually functional to other goals, it is rea-
sonable to characterize the responsibility of the hirer with the accountability it has to-
wards its boss. Accountability a5 means that hi is accountable towards boss for posting
a job vacancy when boss open a position for that job, this triggers the whole hiring pro-
cess. Accountability a6 models the fact that hi is accountable for managing the hiring
process until either the assignment of the position to a candidate or to the abandoned. In
particular, timeout 3monthshi means position-filledhi, that is, the complementary event
of position-filledhi representing the fact that, after a three-month period, the position is
no longer assignable. Thus, when a candidate is accepted (acceptedevi

), hi is expected
to assign the position to that candidate position-filledhi. Otherwise, in case the three-
month period expires without the occurrence of an acceptance (timeout 3monthshi), hi
is expected to abandon the position (position-abandonedhi). Here boss can be thought
of as an abstraction of the rest of the organization to which hirer and evaluator belong.
This allows us to express the relations the hiring process has with other processes within
the same organization. In fact, the hirer is not necessarily the same agent who opens a
position, since the opening of a position might depend on decisions taken at the top level
of an organization. The hirer, instead, is the agent who has the responsibility of manag-
ing the hiring process. The result achieved by this process will reasonably become the
input for a downstream process.

Remark This example has shown how a distributed process can be specified in terms of
a responsibility distribution R and an accountability specification A. It is worth notic-
ing that the former is concerned with the specification of the requirements agents have
to satisfy to play specific roles. Whereas, the the latter is focused on the coordination

aspect. This separation of concerns encourages both modularity and reuse. In fact, the
accountability specifications can be defined and verified w.r.t. responsibility concerning
roles independently of the actual agents that will play roles in the organization itself.
The separation of concerns is at two levels. First, at the level of the distributed pro-
cess specification: a given process can be characterized by several accountability spec-
ifications and several responsibility distributions. At this time, the consistency of the
specification can be checked by verifying whether the accountability specifications fit
with a particular responsibility distribution [2]. Second, at the level of case (i.e., process
instance), the reuse of the same agents taking responsibilities, and being accountable,
in different process specifications is supported by the fact that it is possible to verify
whether process accountability specifications fit the responsibilities taken by agents,
and are closed under control.

5 Implementation in the JaCaMo Platform

So far we have discussed how the notions of accountability and responsibility can be
used, at design time, to specify distributed business processes. This enables forms of
consistency checking (see e.g., [2]), that allows an engineer to discover coordination
flaws that can be solved by properly adding accountability relationships or responsi-
bility attributions. To be an effective instrument in the hands of the engineer, however,
responsibility and accountability should also be means for implementing process co-
ordination at runtime in a way which is compliant with the model defined at design
time. Interestingly, accountabilities (as we proposed them) can be mapped, under cer-
tain conditions, into commitment-based protocols, and hence any agent-based platform
supporting them (see for instance JaCaMo+ [3]), is a good candidate for implementing
the coordination among the business processes.

Roughly speaking, a commitment-based protocol P is a set of social commitments
[32] that agents can manipulate via a predefined set of operations. Formally, a commit-
ment is denoted as C(x, y, p, q), meaning that agent x, the debtor, is committed towards
y, the creditor, to bring about the consequent condition q in case the antecedent condi-
tion p is satisfied. A commitment thus formalizes a promise, or a contract, between the
two agents. It creates a legitimate expectation in y that q will be brought about when-
ever p holds. This aspect is therefore very similar to what an accountability relationship
A(x, y, p, q) creates. Intuitively, thus, for each accountability relationship an analogous
commitment can be defined. However, the mapping is not always so trivial. As noticed
in [11], commitments are just a way to express accountability relations, others are, for
instance, authorizations and prohibitions. Therefore, in general, not every accountabil-
ity relationship can be mapped into a commitment. In this paper, however, we have
characterized accountability in terms of expectation and control, meaning that the a-
giver is expected to do, or to achieve, a given condition. This specific characterization
of accountability is indeed mappable into commitments since a commitment, implicitly,
suggests that the debtor will behave so as to achieve the consequent condition.

In order to properly use commitments for representing accountability relationships,
we have, however, to pay special care on how they are created and defined. First of
all, a commitment can only be created by its debtor. This, in general, enables flexible

executions w.r.t. obligations since agents can decide what commitments to create de-
pending on contextual conditions. However, this flexibility may cause some problems
because responsibilities and accountabilities are not necessarily taken on voluntarily by
an agent, but may be part of a role definition in an organization. In our hiring scenario,
for instance, an agent playing the evaluator role is expected to satisfy its accountabil-
ities related to the objective evaluate candidate; this is not a matter of the evaluator’s
initiative. To cope with this problem, we impose that an agent willing to play a given
role r in P accepts, explicitly, all the commitments Cr in P that mention r as debtor.
In [6] we present the ADOPT protocol as a means for an agent and an organization to
create an accountable agreement upon the powers and commitments that the agent will
take as a player of a specific role in the organization. A second feature of commitments
is that, similarly to accountability relationships, there is no causal nor temporal depen-
dency between the antecedent condition p and the consequent one q: q can be satisfied
even before condition p.

Finally, and more importantly, in a commitment the antecedent and consequent con-
ditions are not necessarily under the control of the creditor and debtor agents, respec-
tively. In other words, agent x can create the commitment C(x, y, p, q) even though it
has no control over q. This feature is again justified by the sake of flexibility, but this
freedom endangers the realization of sound accountabilities. As argued above, in fact,
our accountability relationships demand that the a-giver has control, possibly indirect,
over the consequent condition. This means that also the corresponding commitments
must retain the same property. Noticeably, it can be proved that when a set commit-
ments implements a set of closed accountability relationships, all the commitments are
safe as defined in [20]: “a commitment is safe for its debtor if either the debtor controls
the negation of the antecedent or whenever the antecedent holds, the debtor controls
the residuation of the consequent.” In other words, the safety of the commitments is
obtained as a side effect of the closeness of the accountability specification.

5.1 Implementing the Hiring Process in JaCaMo+

Having a specification of the hiring scenario in terms of accountability and responsibil-
ity, it is possible to come up with an implementation in JaCaMo+. In particular, business
roles are mapped into Jason agents. Jason [8] is an agent programming language, where
agents are expressed as ECA-like rules (Event-Condition-Actions) called plans.

In particular, each agent has a belief base, a set of ground (first-order) atomic for-
mulas which represent the state of the world according to the agent’s vision, and a plan
library. Moreover, it is possible to specify achievement (operator ‘!’) and test (operator
‘?’) goals. A Jason plan is specified as:

triggering event : 〈context〉 ← 〈body〉

where the triggering event denotes the event the plan handles (which can be either the
addition or the deletion of some belief or goal), the context specifies the circumstances
when the plan could be used, and the body is the course of action that should be taken.
JaCaMo+ extends Jason by allowing the specification of plans involving commitments.

These agents/processes operate by executing operations on artifacts implemented
using CArtAgO [27]. Artifacts are programmable resources, that the agents can manip-
ulate through a set of predefined operations, and that expose some observable properties
perceived by the agents themselves. For the hiring process scenario, three kinds of arti-
facts are defined: the socialState artifact maintains the commitments corresponding to
the accountabilities identified in the previous section. It is accessed by all the agents,
and instantiated just once. Artifact posBA maintains the state of the position, it is in-
stanced once for each available position, and is not accessed by the candidates. Finally,
an artifact appBA, which is instantiated once for each candidate, keeps track of the
states of the applications made by every specific candidate. For this reason, this arti-
fact’s instances are accessed only by the candidates and by the evaluators. To simplify
the implementation of the example, we assume that a given candidate i is evaluated by
a dedicated evaluator evi and that the couple shares an instance of appBA on which the
two agents operate. The operations performed by the agents on the posBA and appBA
artifacts have effect on the socialState, too, allowing the commitments to progress.

The pseudocode of the three processes is sketched in Figure 3 1. Listing 1.1, in par-
ticular, shows an excerpt of the hirer process. The first rule, at line 1, is activated when
the commitment which encodes a5 is detached, meaning that the boss has opened a
position. In order to satisfy the commitment, the hirer then performs operation postJob
on artifact posBA. After that, it starts waiting. The second rule, at line 6, again orig-
inates following the discharge rule pattern: the hirer has to properly react as soon as
the commitment encoding a3 gets detached, and hence hi update the position status to
filled. It’s important to point out that the execution of this rule would satisfy the com-
mitment originating from a6 as well. Moreover, it is not required that the acceptedev

operation is performed by a specific evaluator evi; the commitment is detached as soon
as the first offer made by an evaluator is accepted. Finally, the rule at line 10 fires when,
after the timeout of three months, the position is still open. In this case the commitment
originating from a6 is detached and the hirer has to mark the position as abandoned.

The evaluator code is sketched in Listing 1.2. It is a bit more sophisticated since it
encompasses the whole evaluation process. Also in this case, however, the discharge
rule pattern drives the implementation of such a process. In the first rule, the evaluator
reacts to the detachment of commitment associated with a1 when an application is sent,
but the position has already been filled by another candidate. In this case a message of
position closed is sent. Otherwise, if the position is not yet filled, with the rule at line 5,
the evaluator checks the state of the position. If the result of the check is negative, again
a message of position closed is sent. If the result is positive, the evaluator by interviews
the candidate (see line 15). This corresponds to operation screenInterview performed
upon artifact appBA that is shared between the candidate and the evaluator. After this
operation, the evaluator comes up with a Choice, either to accept the candidate, thereby
making an offer, or to reject it. This choice will, thus, activate a proper behavior, and
hence the corresponding operation on appBA, see the rules at lines 21 - 25. Rules at
lines 27 - 33 are, instead, used to react to a candidate’s answer, either “yes” or “no”, to
a possible offer. Accordingly, the evaluator performs an operation on appBA so as to

1 The full code of the example, implemented in JaCaMo+ [3], is available at
http://di.unito.it/hiringaccountability.

1 +cc (hi ,boss ,open-positionboss ,open-positionboss · post-jobhi ,DETACHED)
2 : p o s i t i o n S t a t u s (POSITION OPEN)
3 <− p o s t J o b [a r t i f a c t i d (posBA)] ;
4 ! wa i t3months .
5

6 +cc (hi ,ev ,accepteev ,acceptedev · position-filledhi ,DETACHED)
7 : p o s i t i o n S t a t u s (POSITION OPEN)
8 <− u p d a t e F i l l e d [a r t i f a c t i d (posBA)] .
9

10 +cc (hi ,boss ,post-jobhi ·(acceptedev ∨ timeout 3monthshi) ,hiringhi ,DETACHED)
11 : p o s i t i o n S t a t u s (POSITION OPEN) &
12 t i m e o u t 3 m o n t h s
13 <− updateAbandoned [a r t i f a c t i d (posBA)] .

Listing 1.1. Hirer hi.

1 +cc (evi ,hi ,post-jobhi · applyi ,post-jobhi · applyi · evaluate-candidateevi ,DETACHED)
2 : p o s i t i o n S t a t u s (POSITION FILLED)
3 <− p o s i t i o n C l o s e d [a r t i f a c t i d (AppId)] .
4

5 +cc (evi ,hi ,post-jobhi · applyi ,post-jobhi · applyi · evaluate-candidateevi ,DETACHED)
6 : not p o s i t i o n S t a t u s (POSITION FILLED)
7 <− c h e c k P o s i t i o n [a r t i f a c t i d (posBA)] ;
8 / / . . . R e s u l t
9 ! c l o s e O r S c r e e n (R e s u l t) .

10

11 +! c l o s e O r S c r e e n (R e s u l t)
12 : R e s u l t == no
13 <− p o s i t i o n C l o s e d [a r t i f a c t i d (appBA)] .
14

15 +! c l o s e O r S c r e e n (R e s u l t)
16 : R e s u l t == yes
17 <− s c r e e n I n t e r v i e w [a r t i f a c t i d (appBA)] ;
18 / / . . . Choice
19 ! o f f e r O r R e j e c t (Choice) .
20

21 +! o f f e r O r R e j e c t (Choice) : Choice == yes
22 <− makeOffer [a r t i f a c t i d (appBA)] .
23

24 +! o f f e r O r R e j e c t (Choice) : Choice == no
25 <− r e j e c t i o n N o t i c e [a r t i f a c t i d (appBA)] .
26

27 + r e s p o n s e Y e s (candidatei) [a r t i f a c t i d (s o c i a l S t a t e)]
28 : cc (evi , hi , post-jobhi · applyi , post-jobhi · applyi · evaluate-candidateevi , DETACHED)
29 <− o f f e r A c c e p t e d [a r t i f a c t i d (appBA)] .
30

31 + responseNo (candidatei) [a r t i f a c t i d (s o c i a l S t a t e)]
32 : cc (evi , hi , post-jobhi · applyi , post-jobhi · applyi · evaluate-candidateevi , DETACHED)
33 <− o f f e r R e j e c t e d [a r t i f a c t i d (appBA)] .

Listing 1.2. Evaluator evi.

1 + p o s t J o b (hi) <− a p p l y [a r t i f a c t i d (appBA)] .
2

3 +cc (candidatei , evi , make-offerevi , make-offerevi · (response-yesi ∨ response-noi) , DETACHED)
4 <− / / . . . Choice
5 ! r e s p o n s e (Choice) .
6

7 +! r e s p o n s e (Choice) : Choice == yes
8 <− r e s p o n s e Y e s [a r t i f a c t i d (appBA)] .
9

10 +! r e s p o n s e (Choice) : Choice == no
11 <− re sponseNo [a r t i f a c t i d (appBA)] .

Listing 1.3. Candidate i.

1 +cc (hi ,boss ,open-positionboss ,open-positionboss · post-jobhi ,CONDITIONAL)
2 : p o s i t i o n S t a t u s (POSITION NULL)
3 <− o p e n P o s i t i o n [a r t i f a c t i d (posBA)]

Listing 1.4. Boss boss.

Fig. 3. The business processes as declarative ECA rules.

progress in the evaluation process and, then, satisfy its commitment. Interestingly, it’s
worth noting that no specific rule is requested for treating the commitment associated
with a2 because whenever such a commitment gets detached, the evaluator satisfies it by
satisfying the first one. However, at a normative layer, the commitment which encodes
a2 is fundamental to detect the misbehavior of the evaluator towards the candidate.

Listing 1.3 sketches the pseudocode of a candidate. This process applies for a po-
sition when a job is posted (see operation apply performed upon appBA), and, then,
reacts to the detachment of commitment associated with a4 by answering either “yes”
or “no” to an offer.

Finally, Listing 1.4 shows the pseudocode of the boss. This process is not present
in the original version of the example, but here it is necessary to start the whole, by
detaching the commitment which encodes a5. Indeed, the only action performed by the
boss is to open the position as soon as the commitment associated with a5 is created,
thereby detaching it.

6 Discussion and Conclusions

Goals are the final purposes that justify every activity in business processes. Surpris-
ingly enough, however, goals are not modeled explicitly in the standard modeling lan-
guages for business applications (e.g., BPMN). Especially in cross-organizational set-
tings, the lack of an explicit representation of the business goal raises many prob-
lems, including documentation, design checking, and compliance of the implementa-
tion. Cross organizational business processes are often modeled via choreographies
which define “the sequence and conditions under which multiple cooperating, inde-
pendent agents exchange messages in order to perform a task to achieve a goal” [35].
Choreographies are therefore a means for reaching goals in a distributed way, but the
goal is in the mind of the modeler, whereas the model itself boils down to an exchange
of messages that may be not sufficiently informative. As discussed in [14], the intercon-
nection model style of BPMN hampers the modularity and reuse of the processes, and
creates situations where the interaction is easily ill-modeled. Decker et al. propose a
novel modeling style for choreographies: the interaction model, and introduce iBPMN
as an extension to BPMN. In iBPMN a choreography becomes a first-class component
as it lays outside the business processes. Specific language elements allow the modeler
to express how the interaction progresses through a workflow, where elementary activi-
ties include the (atomic) send-receive of messages, and decision and split gates. iBPMN
allows the modeler to define ordering constraints between the interaction activities, and
it is certainly a more powerful tool for expressing choreographies than standard BPMN,
however, the goal of the interaction is still in the mind of the modeler and it is not made
explicit.

In this paper we have shown how the notions of responsibility and accountability
provide the engineer with explicit modeling tools, through which it becomes possible
to distribute a business goal among different processes, yet maintaining precise depen-
dencies among them via accountability relationships. For the sake of exposition, we
have presented our approach through an example of the one-to-many coordination pat-
tern. However, our proposal is applicable for cross-organization integration in the broad

sense. An explicit representation of accountability relationships has several advantages.
First of all, it makes the assessment of the correctness of an interaction model possi-
ble. As shown in the simple hiring scenario, for instance, we have singled out a flaw
in the BPMN model proposed by Silver, thanks to the formal characterization of con-
trol associated with an accountability relationships. Moreover, our proposal paves the
way to compatibility and conformance checks. Intuitively, compatibility centers around
whether a set of process models can interact successfully. Conformance, on the other
hand, focuses on whether a process model is a valid refinement or implementation of a
given specification [14]. We have also pointed out that our accountability relationships
are not just an abstract modeling tool, but find a proper implementation in commitment-
based protocols. The obvious advantage, thus, is to translate the interaction model into
a compliant implementation.

Agent-based approaches are typically declarative. Declarative approaches are also
used in the information systems area, in particular for what concerns business process
representation. The GSM model [19] is an attempt to represent in a declarative way
the artifact lifecycle. Such a goal is considered so important that recently the OMG has
released the issue 1.1 of the document for the specification of Case Management Model
and Notation (CMMN) [22], which is an extension and refinement of GSM. Further
investigations of these approaches will be the objective of future work. In particular,
CMMN exploits an event-condition-action language that bears similarities to the way
in which agents are programmed when using Jason.

References

1. Anderson, P.A.: Justifications and precedents as constraints in foreign policy decision- mak-
ing. American Journal of Political Science 25(4) (1981)

2. Baldoni, M., Baroglio, C., Boissier, O., May, K.M., Micalizio, r., Tedeschi, S.: Accountabil-
ity and responsibility in agent organizations. In: PRIMA 2018: Principles and Practice of
Multi-Agent Systems, 21st International Conference. Lecture Notes in Computer Science,
Springer (2018)

3. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Commitment-based Agent Inter-
action in JaCaMo+. Fundamenta Informaticae 159(1-2), 1–33 (2018)

4. Baldoni, M., Baroglio, C., Capuzzimati, F., Micalizio, R.: Type Checking for Protocol Role
Enactments via Commitments. Journal of Autonomous Agents and Multi-Agent Systems
32(3), 349–386 (May 2018)

5. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: An Information Model for
Computing Accountabilities. In: Ghedini, C., Magnini, B., Passerini, A., Traverso, P. (eds.)
Proc. of 17th International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2018). Springer, Trento, Italy (2018), in this same volume.

6. Baldoni, M., Baroglio, C., May, K.M., Micalizio, R., Tedeschi, S.: Computational Account-
ability in MAS Organizations with ADOPT. Applied Sciences 8(4) (2018)

7. Baldoni, M., Baroglio, C., Micalizio, R.: Goal Distribution in Business Process Models. In:
Ghedini, C., Magnini, B., Passerini, A., Traverso, P. (eds.) Proc. of 17th International Con-
ference of the Italian Association for Artificial Intelligence (AI*IA 2018). Springer, Trento,
Italy (2018), in this same volume.

8. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-
peak Using Jason. John Wiley & Sons (2007)

9. Burgemeestre, B., Hulstijn, J.: Handbook of Ethics, Values, and Technological Design, chap.
Designing for Accountability and Transparency. Springer (2015)

10. Chopra, A.K., Singh, M.P.: The thing itself speaks: Accountability as a foundation for re-
quirements in sociotechnical systems. In: IEEE 7th Int. Workshop RELAW. IEEE Computer
Society (2014), http://dx.doi.org/10.1109/RELAW.2014.6893477

11. Chopra, A.K., Singh, M.P.: From social machines to social protocols: Software engineering
foundations for sociotechnical systems. In: Proc. of the 25th Int. Conf. on WWW (2016)

12. Darwall, S.: Morality, Authority, and Law: Essays in Second- Personal Ethics I, chap. Civil
Recourse as Mutual Accountability. Oxford University Press (2013)

13. Dastani, M., Lorini, E., Meyer, J.C., Pankov, A.: Other-condemning anger = blaming ac-
countable agents for unattainable desires. In: Proc. of AAMAS. ACM (2017)

14. Decker, G., Weske, M.: Interaction-centric modeling of process choreographies. Information
Systems 36(2), 292–312 (2011)

15. Durkheim, E.: De la division du travail social. PUF (1893)
16. Feltus, C.: Aligning Access Rights to Governance Needs with the Responsability MetaModel

(ReMMo) in the Frame of Enterprise Architecture. Ph.D. thesis, University of Namur, Bel-
gium (2014)

17. Garfinkel, H.: Studies in ethnomethodology. Prentice-Hall Inc., Englewood Cliffs, New Jer-
sey (1967)

18. Grant, R.W., Keohane, R.O.: Accountability and Abuses of Power in World Politics. The
American Political Science Review 99(1) (2005)

19. Hull, R., Damaggio, E., De Masellis, R., Fournier, F., Gupta, M., III, F.F.T.H., Hobson, S.,
Linehan, M.H., Maradugu, S., Nigam, A., Sukaviriya, P.N., Vaculı́n, R.: Business artifacts
with guard-stage-milestone lifecycles: managing artifact interactions with conditions and
events. In: Proceedings of the Fifth ACM International Conference on Distributed Event-
Based Systems, DEBS 2011, New York, NY, USA, July 11-15, 2011. pp. 51–62 (2011)

20. Marengo, E., Baldoni, M., Baroglio, C., Chopra, A., Patti, V., Singh, M.: Commitments with
regulations: reasoning about safety and control in REGULA. In: Proc. of the 10th Int. Conf.
on Autonomous Agents and Multiagent Systems (AAMAS). vol. 2, pp. 467–474 (2011)

21. Nissenbaum, H.: Accountability in a computerized society. Science and Engineering Ethics
2(1), 25–42 (1996)

22. Object Management Group (OMG): Case Management Model and Nota-
tion (CMMN), Version 1.1. OMG Document Number formal/2016-12-01
(http://www.omg.org/spec/CMMN/1.1/PDF) (2006)

23. Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes
management. In: Business Process Management Workshops, BPM 2006 International Work-
shops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7,
2006, Proceedings. pp. 169–180 (2006)

24. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE: full support for loosely-
structured processes. In: 11th IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2007), 15-19 October 2007, Annapolis, Maryland, USA. pp. 287–300
(2007)

25. van de Poel, I.: The Relation Between Forward-Looking and Backward-Looking Responsi-
bility, pp. 37–52. Springer Netherlands (2011)

26. Quinn, A., Schlenker, B.R.: Can accountability produce independence? goals as determinants
of the impact of accountability on conformity. Personality and Social Psychology Bulletin
28(4), 472–483 (April 2002)

27. Ricci, A., Piunti, M., Viroli, M.: Environment programming in multi-agent systems: an
artifact-based perspective. Autonomous Agents and Multi-Agent Systems 23(2), 158–192
(2011), http://dx.doi.org/10.1007/s10458-010-9140-7

28. Romzek, B.S., Dubnick, M.J.: Accountability in the Public Sector: Lessons from the Chal-
lenger Tragedy. Public Administration Review 47(3) (1987)

29. Schlenker, B.R., Britt, T.W., Pennington, J., Rodolfo, M., Doherty, K.: The triangle model of
responsibility. Psychological Review 101(4), 632–652 (October 1994)

30. Silver, B.: BPMN Method and Style, with BPMN Implementer’s Guide. Cody-Cassidy Press,
Aptos, CA, USA, second edn. (2012)

31. Simon, J.: The Online Manifesto: Being human in a hyperconnected era, chap. Distributed
Epistemic Responsibility in a Hyperconnected Era. Springer Open (2015)

32. Singh, M.P.: An ontology for commitments in multiagent systems. Artif. Intell. Law 7(1),
97–113 (1999)

33. Singh, M.P.: Distributed Enactment of Multiagent Workflows: Temporal Logic for Web Ser-
vice Composition. In: The Second International Joint Conference on Autonomous Agents
& Multiagent Systems, AAMAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia,
Proceedings. pp. 907–914. ACM (2003)

34. Suchman, L.: Discourse, Tools, and Reasoning: Essays on Situated Cognition, chap. Centers
of Coordination: A Case and Some Themes. Springer-Verlag, Berlin (1997)

35. W3C: W3C Glossary and Dictionary (2003), /http://www.w3.org/2003/glossary/,
/http://www.w3.org/2003/glossary/

36. Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer
(2007)

