
Prioritization in Automotive Software Testing:
Systematic Literature Review

Ankush Dadwal, Hironori Washizaki, Yoshiaki Fukazawa
Department of Computer Science and Engineering

Waseda University
Tokyo, Japan

ankush.dadwal@toki.waseda.jp

Takahiro Iida, Masashi Mizoguchi, Kentaro Yoshimura
Control Platform Research Department

Center for Technology Innovation - Controls
Hitachi, Ltd. Research & Development Group

takahiro.iida.ac@hitachi.com

Abstract—Automotive Software Testing is a vital part of the
automotive systems development process. Not identifying the
critical safety issues and failures of such systems can have
serious or even fatal consequences. As the number of embedded
systems and technologies increases, testing all components
becomes more challenging. Although testing is expensive, it
is important to reduce bugs in an early stage to maintain
safety and to avoid recalls. Hence, the testing time should
be reduced without impacting the reliability. Several studies
and surveys have prioritized Automotive Software Testing to
increase its effectiveness. The main goals of this study are to
identify: (i) the publication trends of prioritization in Automotive
Software Testing, (ii) which methods are used to prioritize
Automotive Software Testing, (iii) the distribution of studies
based on the quality evaluation, and (iv) how existing research
on prioritization helps optimize Automotive Software Testing.

Index Terms—Automotive Software Testing, Prioritizing,
Systematic Literature Review

I. INTRODUCTION

Currently the automotive industry is undergoing a major
transition. Automakers have been adding new functions and
systems to meet the market’s demand for an ever-growing
amount of software-intensive functions. However, these new
functions and systems have some negative aspects. One
is that automakers must enhance their testing techniques
because vehicle complexity is increasing. Testing typically
consumes more than half of all development costs [4]. While
testing a single software system is difficult, testing without
prioritization is even more challenging due to the exponential
number of products and the number of features. Today,
software determines more than 90% of the functionality in
automotive systems and software components are no longer
handwritten [6].

Test case prioritization is a method to prioritize and schedule
test cases. In this technique, test cases are run in the order of
priority to minimize time, cost, and effort during the software
testing phase. Every organization has its own methods to
prioritize test cases. The automotive safety standard ISO26262
requires extensive testing with numerous test cases. To achieve
a high productivity, the availability of quality assurance
systems must be high [7].

Herein we use a systematic literature review to evaluate
relevant publications on prioritization in the automotive
industry. A systematic review aims to assess scientific papers

in order to group concepts around a topic. Through analysis
criteria, it allows the quality of research to be evaluated. Herein
the system review aims to identify common techniques in
automotive testing and to define new challenges.

The paper is structured as follows. Section II describes
related works. The systematic literature review approach is
detailed in Section III. Section IV presents the results obtained
from the systematic review. Section V addresses potential
threats to validity. Finally, Section VI lists the conclusions
and the definitions for future work.

II. RELATED WORKS

Automakers have experienced the impact of the evolution of
technology on automotive testing. Today, testing all systems
manually is not only cost-intensive and time-consuming
but nearly impossible. Automating the testing phase would
significantly reduce the cost of software development [14].
Literature about the prioritization efforts in the automobile
industry is scarce. Herein we focus on known techniques and
their applicability to the investigated domain.

In the past few decades, numerous studies [5], [6], [7],
[8], [9], [10], [13], [15], [16], [17], [19], [20], [24], [27]
have demonstrated that vehicles are becoming increasingly
more complex and more connected. For example, an empirical
study, which aimed to investigate the potential regarding
quality improvements and cost savings, employed data from
13 industry case studies as part of a three-year large-scale
research project. This study identified major goals and
strategies associated with (integrated) model-based analysis
and testing as well as evaluated the improvements achieved
[25].

The only study we found that reviews the literature about
the benefits and the limitations of Automated Software Testing
is presented by Mantyla et al, [3] (2012). Their review, which
included 25 works, tries to close the gap by investigating
academic and practitioner views on software testing regarding
the benefits and the limits of test automation. They found that
while benefits often come from stronger sources of evidence
(experiments and case studies), limitations are more frequently
reported in experience reports. Second, they conducted a
survey of the practitioners’ view. The results showed that the
main benefits of test automation are reusability, repeatability,
and reduced burden in test executions. Of the respondents,

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 52

45% agreed that the available tools are a poor fit for their needs
and 80% disagreed with the vision that automated testing
would fully replace manual testing.

III. METHODOLOGY

We started the systematic literature review by specifying
our scope and searching only documents in the domain
of automotive software testing that discuss issues related
to prioritization in the field of testing. Topics that focus
only on software testing without prioritizing the test cases
are excluded. In this research, we followed the guidelines
suggested in papers [1], [2] . This method is divided into three
steps.

A. Research Questions

This study strives to answer the following research
questions:
RQ1. What are the publication trends of prioritization in
Automotive Software Testing?
This research question should characterize the interest and
ongoing research on this topic. Additionally, it will identify
relevant venues where results are being published and the
contributions over time.
RQ2. What are the methods used for prioritization in
Automotive Software Testing?
This research question should elucidate the different methods
used for prioritization in Automotive Software Testing. The
goal here is to determine the main methods and tools used by
researchers.
RQ3. How are the studies distributed based on a quality
evaluation of prioritization in Automotive Software Testing?
This research question should reveal the quality distribution
of the selected primary studies and evaluate them accordingly.
RQ4. How does existing research on prioritization help with
the optimization of Automotive Software Testing?
This research question should classify existing and future
research on prioritization in Automotive Software Testing and
assess current research gaps. This is the most important and
challenging question as it aims to compile problems that have
yet to solved.

B. Search and Selection Process

The search and selection process is a multi-stage process
(Fig. 1). This multi-stage process allows us to fully control the
number and characteristics of the studies that are considered
during various stages.

As mentioned in [1] and [2], we used three of the
largest scientific databases and indexing systems in software
engineering: ACM Digital Library, IEEE Xplore, and Scopus.
These were selected because they are common, effective
in systematic literature reviews in software engineering,
and capable of exporting the search results. Further, these
databases provide mechanisms to perform keyword searches.
We did not specify a fixed time frame when conducting the
search. To cover as many significant studies as possible,
the systematic literature search query was very generic and

IEEE

ACM

Scopus

53

145

147

11

15

30

48 29

Initial
Search

Impurity
Removal

Merge and
duplicate
removal

Inclusion
and
Exclusion
criteria

Removal
during
data
extraction

25
TOTAL

Fig. 1. Paper selection process

considered the object of our research (i.e., Prioritization in
Automotive Software Testing).

1) Initial Search: We performed a search in three of the
largest and most complete scientific databases and indexing
systems in software engineering: ACM Digital Library, IEEE
Xplore, and Scopus. We searched these databases using a
search string that included the important keywords in our
four research questions. Further, we augmented the keywords
with their synonyms, producing the following search string:

((”automobile” OR ”automotive” OR ”car”)
AND
(”software” OR ”program” OR ”code”)
AND
(”prioritization” OR ”priority” OR ”case selection”)
AND
(test*))

For consistency, we executed the query on titles, abstracts,
and keywords of papers in all the data sources at any time
and any subject area.

2) Impurity Removal: Due to the nature of the involved
data sources, the search results included some elements
that were clearly not research papers such as abstracts,
international standards, textbooks, etc. In this stage, we
manually removed these results.

3) Merge and Duplicate Removal: Here we combined all
studies into a single dataset. Duplicated entries were matched
by title, authors, year, and venue of publication.

4) Inclusion and Exclusion Criteria: We considered all
the selected studies and filtered them according to a set of
well-defined selection criteria. The inclusion and exclusion
criteria of our study are:

Inclusion criteria:

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 53

• Studies focusing on software testing specific to the
automotive industry.

• Studies providing a solution for prioritizing Automotive
Software Testing.

• Studies in the field of software engineering.
• Studies written in English.
Exclusion criteria:
• Studies that focus on the automotive industry, but do not

explicitly deal with software testing.
• Studies where software testing is only used as an

example.
• Studies not available as full-text.
• Studies not presented in English.
• Studies that are duplicates of other studies.

5) Removal during Data Extraction: When reviewing the
primary studies in detail to extract information, all the authors
agreed that four studies were semantically beyond the scope
of this research. Consequently, they were excluded.

C. Data extraction

Relevant information was extracted to answer the research
questions from the primary studies. We used data extraction
forms to make sure that this task was carried out in an
accurate and consistent manner. The data was collected and
stored in a spreadsheet using MS Excel to list the relevant
information of each paper. This technique helps extract and
view data in a tabular form.

The following information was collected from each paper:
• Publication title
• Publication year
• Publication venue
• Problems faced by the authors
• Testing method used
• Limitations in field
• Detail of the proposed solution
• Results obtained
• Rating of quality issues
• Verification and validation
• Future work suggested by the authors
• Conclusions
• Answers to research questions

IV. ANALYSIS RESULTS

This section presents the analysis and each sub-section
answers the previously presented research questions. We used
the R software environment and Microsoft Excel to perform
basic statistical operations and draw charts.

A. Publication Trends (RQ1)

Figure 2 presents the distribution of publications over time.
The most common publication types are conference papers
(17/25) followed by workshop papers (5/25), journals (2/25),
and symposiums (1/25). The high number of conference papers
may indicate that prioritization of automotive software testing

Fig. 2. Primary studies distributed by type of publication over the years

TABLE I
APPLIED RESEARCH STRATERGIES

Res. strategies #Studies Studies
Solution Proposal 20 P4, P5, P6, P7, P8, P9, P10,

P11, P12, P16, P17, P18, P19,
P20, P21, P22, P23, P24, P26,
P27

Evaluation Research 15 P5, P8, P10, P11, P13, P15,
P16, P17, P18, P19, P20, P21,
P22, P26, P28

Validation Research 14 P5, P8, P9, P10, P11, P12,
P16, P18, P20, P21, P22, P24,
P26, P28

Opinion Paper 4 P13, P14, P25, P27
Survey Paper 1 P25

is maturing. A small but constant number of publications were
published until 2014. However, prioritization has become an
important and eye-catching aspect in terms of research since
2014. The interest in prioritization of automotive software
testing has rapidly increased in the last few years.

Studies published before 2015 refer to slightly different
perspectives on prioritization than more recent papers. The
number of papers has drastically increased since 2014. . [25]
[11] [4] [6] [10] used model-based testing to improve the
prioritization by increasing the effectiveness. On the other
hand, [6] [10] showed potential improvements and proposed
new model-based methods.

Many researchers provided solution proposals (20/25)
and evaluation research (15/25) (Table I), indicating that
today’s researchers focus on industry and practitioner-oriented
studies (e.g., industrial case study, action research). Another
common research strategy is validation research (14/25),
highlighting the fact that there is some level of evidence
(e.g., simulations, experiments, prototypes, etc.) supporting
the proposed solutions. However, Table I also shows that few
studies employ surveys (1/25), suggesting that future studies
should fill this gap.

B. Methods Used (RQ2)

Due to the requirement of connected services for vehicles,
an interesting method is model-based testing. Figure 3 depicts
a histogram of the distribution of the most common techniques
in the literature. The most common testing methods are
model-based testing (7/25), regression testing (6/25), and black
box testing (5/25), followed by hardware in the loop testing

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 54

Fig. 3. Testing Methods

(4/25), software testing (4/25), functional testing (3/25), and
other.

Approaches that use model-based testing are found in [4] [6]
[9] [10] [11] [25] [26]. Techniques listed as “OTHER” refer to
the use of integration testing [10] [24], software product line
testing [4] [11], system testing [5] [8], abstract testing [17],
combinational testing [18], cyber-physical system testing [13],
end-of-line testing [7], simulation testing [12], stateflow testing
[15], and statistical testing [20].

Different methods or combination of methods are used in
multiple studies (Table II). These papers frequently target
model-based testing (7/25), regression testing (6/25), and black
box testing (5/25). Model-based development is an efficient,
reliable, and cost-effective paradigm to design and implement
complex embedded systems. The software determines more

TABLE II
APPLIED TESTING METHODS

Testing Methods #Studies Studies
Model-Based Testing 7 P4, P6, P9, P10,

P11, P25, P26
Regression Testing 6 P5, P6, P7, P9,

P11, P19
Black-Box Testing 5 P5, P8, P9, P16,

P19
Hardware in the Loop Testing Testing 4 P8, P16, P27,

P28
Software Testing 4 P14, P21, P23,

P27
Functional Testing 3 P16, P22, P28
Integration Testing 2 P10, P24
Software Product Line Testing
Testing

2 P4, P11

System Testing 2 P5, P8
Abstract Testing 1 P17
Combinational Testing 1 P18
Cyber-Physical Systems Testing 1 P13
End-of-Line Testing 1 P7
Simulation Testing 1 P12
Stateflow Testing 1 P15
Statistical Testing 1 P20

TABLE III
RATING OF REVIEWED ARTICLES

Reference QI1 QI2 QI3 QI4 Total
4 Y Y Y Y 4
5 Y P P Y 3
6 Y P Y P 3
7 Y Y P Y 3.5
8 Y P P Y 3
9 Y Y P P 3
10 Y Y N P 2.5
11 P Y P Y 3
12 Y P Y P 3
13 Y Y Y Y 4
14 Y P Y Y 3.5
15 Y P Y P 3
16 Y Y P Y 3.5
17 Y Y Y Y 4
18 P P Y Y 3
19 Y Y Y Y 4
20 Y N P P 2
21 Y P P Y 3
22 Y Y P Y 3.5
23 P N Y N 1.5
24 Y Y Y Y 4
25 Y Y Y P 3.5
26 Y Y P Y 3.5
27 Y Y Y N 3
28 Y P Y P 3

Average 3.2

than 90% of the functionality of automotive systems and
up to 80% of the automotive software can be automatically
generated from models [6]. Additionally, model-based testing
is a common solution to test embedded systems in automotive
engineering. Regression testing is undertaken every time
a model is updated to verify quality assurance, which is
time-consuming as it reruns an entire test suite after every
minor change. Test case selection for regression testing after
new releases is an important task to maintain the availability
[7]. Typically studies focus on black-box testing scenarios
because the source code is often unavailable in the automotive
domain such as an OEM-supplier scenario [19]. Hardware in
the loop testing (4/25) and software testing (4/25) are the next
most used methods. The most common method of testing
the software and the Electronic Control Units (ECU) is the
use of Hardware-In-the-Loop (HIL) simulation [27]. Software
testing presents an approach to automatically generate test
cases for a software product. Functional testing (3/25) strives
to demonstrate the correct implementation of functional
requirements and is one of the most important approaches to
gain confidence in the correct functional behavior of a system
[28]. Integration testing (2/25), software product line testing
(2/25), and system testing (2/25) are used as the time donation
when the testing process is limited. A negative highlight of
this systematic review is the fact that only one paper directly
employs a simulation testing method [12]. If a simulation
environment can imitate the key criteria of the real-world

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 55

TABLE IV
VALIDATION,TECHNIQUES/TOOLS, GAPS, AND MAIN OUTCOMES OF STUDIES

Validation No. of
Papers

Study Techniques/Tools Gaps Main Outcome(s)

Industrial
Case
Study

14
(56%)

P5 Test case selection based a on
Stochastic model

Find better heuristic clustering approaches Regression effort can be minimized

P8 Test case selection based on a
component and communication
model

Change deployed libraries 82.3% reduction in tested functions

P10 Taster tool, Proposed new
framework for MBT

Focus on the optimization of the
classification structure used within
the priority assignment procedure

New framework for the MBT

P11 Dissimilarity-based TCP Investigate the fault detection capabilities
of the approach

Dissimilarity-based TCP issues are solved

P15 Test selection algorithms Develop optimal guidelines to divide test
oracle budget across the output-based
selection algorithms

Output-based algorithms consistently
outperform coverage-based algorithms in
revealing faults

P16 Evolutionary Testing
Framework, modularHiL,
MESSINA

Investigate how to configure the
evolutionary testing system to reduce
the number of pre-tests

Solution provide complements systematic
testing in that it generates test cases
for situations that would otherwise be
unforeseen by testers

P17 Migration from traditional to
abstract testing

Extend the formalism to handle
non-functional requirements

Abstract testing is comparable in
effectiveness

P18 Equivalence Class Partitioning
(ECP), Boundary Value
Analysis (BVA), Choice
Relationship Framework (CRF)

Investigatee efficient test case generation
and discover more feasible tools and
empirical studies to work

Efficient reduction in the final effective
number of test cases by 42 (88% reduction)

P19 Test case combination Six approaches are presented to improve
test efficiency

Machine learning approach in black-box
testing

P20 Combination of test models in
MATLAB/Simulink

NO GAPS MENTIONED Higher coverage is achieved compared with
manually created test cases

P21 Automatically generate test
cases

Refine the functional coverage model Improvement actions are identified for test
case generation

P22 Proposed unified model Implement a large survey on software
specifications in Johnson Controls
company

More than 90% of the requirements are
represented by the model

P26 End-to-end test framework Investigate the nature of the test model and
the relevance to the generated test cases

Automation of executable test script
generation

P28 Search-based testing principles Further investigate safety requirements Promising approach to ensure safety
requirements

Technique
Comparison

6
(24%)

P4 Similarity-Based Product
Prioritization w.r.t Deltas

Include more Solution space information
(Such as Source code)

Improvement in the effectiveness of SPL
testing

P6 New model-based method for
test case prioritization

Implement performance evaluation with a
large-scale case study

Future regression testing can be sped up

P7 Combined fault diagnosis and
test case selection

Evaluate using an end-of-line test system
at a real assembly line

System can find test cases to increase the
test coverage

P13 Weight-based search algorithms Study weight tuning, different fitness
functions, and cost-effectiveness measures

Results suggest that all the search
algorithms outperform Random Search

P23 Model slicing technique for
optimal test case generation

NO GAPS MENTIONED Complexity of Simulink models can be
reduced

P24 OUTFIT tool Evaluate it with other domains such as
medical and avionic systems

Potential defects can be effectively
identified

Statistical
Evaluation

1
(4%)

P9 Dependences between the
components of embedded
systems

Study exhaustiveness of the path search
and correctness of path search

Reduction in test-cases for regression
testing

Simulation 1
(4%)

P12 Parallelly execute loosely
coupled segments

Fully automate the process of segmentation
and instrumentation

Reduce the simulation testing time for both
successful and failed runs

Others 3
(12%)

P14 Three approaches to
automatically generate MC/DC
test cases

Focus on MC/DC test case generation from
formal specifications

Approaches can be combined to support
different kinds of decisions

P25 Survey paper Publish more detailed description of the
applied evaluation approach

Improvements that are possible with
MBAT technologies

P27 Study on requirements *NO GAPS MENTIONED* Synect provides easy test requirement
specifications and management of the test
results

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 56

environment, it should be used to provide early feedback
on the vehicle’s design.

C. Quality Evaluation (RQ3)

According to [29], a ranking was created to rate papers
based on the relevance to the topic and the quality of the
paper. Quality Issues (QI) are:

• QI1 Is the paper’s goal clear?
• QI2 Does the assessment approach match the goals?
• QI3 Can the method be replicated?
• QI4 Are results shown in detail?
For each quality issue, articles were rated as: Yes (Y) when

the issue is addressed in the text, Partial (P) when the issue is
partially addressed in the text, and No (N) when the issue is
not addressed in the text. These ratings were scored as Yes = 1
point, Partial = 0.5, and No = 0. Table III shows the papers that
were analyzed in this SLR and their respective scores based
on the Quality Issues discussed above.

D. Existing Research (RQ4)

Here we discuss the recurring problems that are targeted
by primary studies, which methods described in RQ2 are
validated, and the gaps mentioned in the research.

Recurring problems are time consumption (15/25), cost
(13/25), and complexity (14/25) followed by test case selection
(3/25) and quality improvement (3/25) (Table V). Because
the testing time is expensive, it should be reduced without
an uncontrolled reduction of reliability. The entire test suite
must be rerun each time the system is updated or modified.
Consequently, each modification makes the testing process
more time-consuming. Automotive systems are becoming
more complex due to a higher rate of integration and shared
usage. The high complexity results in numerous interfaces,
and many signals must be processed inside the system [9].
Testing activities can account for a considerable part of the
software production costs. However, only two studies discuss
improving efficiency [18] and safety [26] which is a negative
highlight.

Table IV presents the studies within each category,
Techniques/Tools, gaps, and the main study outcomes. Most

TABLE V
TARGET PROBLEMS

Problems #Studies Studies
Time Consumption 15 P5, P6, P8, P9, P10, P12,

P13, P14, P15, P16, P17,
P19, P20, P24, P27

Complexity 14 P5, P6, P7, P8, P9, P10,
P13, P15, P16, P17, P19,
P20, P24, P27

Cost 13 P5, P6, P8, P9, P10, P13,
P15, P16, P17, P19, P20,
P24, P27

Test Case Selection 3 P7, P11, P28
Quality Improvement 3 P22,P25,P26
Test Generation 2 P21,P23
Problem Space Information 1 P4
Improving Efficiency 1 P18
Safety 1 P26

TABLE VI
VALIDATION

Techniques #Studies Studies
Industrial Case Study 14 P5, P8, P10, P11, P15,

P16, P17, P18, P19, P20,
P21, P22, P26, P28

Technique Comparison 6 P4, P6, P7, P13, P23, P24
Statistical Evaluation 1 P9
Simulation 1 P12
Others 3 P14, P25, P27

studies are focus on industrial case studies (n = 14) and
technique comparisons (n = 6).

Table VI lists the techniques used to validate the selected
studies. The most common are industrial case studies
(14/25) followed by technique comparisons (6/25), statistical
evaluations (1/25), simulations (1/25), and others (3/25).
Technique comparisons include studies that propose and then
compare a new method to an old one. Others include three
studies, which [14] [27] talk about the advantages, limitations,
and requirements of different approaches. [25] is a survey
paper from 13 industry case studies.

V. THREATS TO VALIDITY

The analysis was conducted by a single person. Thus, one
threat is that some information may be omitted. Moreover, the
analysis is limited by the analytical skills of that single person.

VI. CONCLUSION

This paper overviews the Prioritization in Automotive
Software Testing. The results should help companies that
are planning to incorporate prioritization into their strategies.
Researchers can also benefit because this study depicts the
limitations and gaps in current research. Additionally, the
trends in other embedded and non-embedded domains must
be investigated as this should provide a more detailed picture
and lessons learned regarding prioritization in Automotive
Software Testing. Future work includes (i) a qualitative study
to better understand test execution, test case generation,
test case selection, and test analysis and (ii) addressing the
identified research gaps.

REFERENCES

[1] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” 2007.

[2] B. Kitchenham and P. Brereton, “A systematic review of systematic
review process research in software engineering,” Inf. Softw. Technol.,
vol. 55, no. 12, pp. 2049–2075, Dec. 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2013.07.010

[3] D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Mäntylä, “Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey,” in 2012 7th International Workshop on
Automation of Software Test (AST), June 2012, pp. 36–42.

[4] M. Al-Hajjaji, S. Lity, R. Lachmann, T. Thüm, I. Schaefer, and G. Saake,
“Delta-oriented product prioritization for similarity-based product-line
testing,” in 2017 IEEE/ACM 2nd International Workshop on Variability
and Complexity in Software Design (VACE), May 2017, pp. 34–40.

[5] I. Alagöz, T. Herpel, and R. German, “A selection method for black
box regression testing with a statistically defined quality level,” in 2017
IEEE International Conference on Software Testing, Verification and
Validation (ICST), March 2017, pp. 114–125.

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 57

[6] A. Morozov, K. Ding, T. Chen, and K. Janschek, “Test suite prioritization
for efficient regression testing of model-based automotive software,”
in 2017 International Conference on Software Analysis, Testing and
Evolution (SATE), Nov 2017, pp. 20–29.

[7] S. Abele and M. Weyrich, “A combined fault diagnosis and test case
selection assistant for automotive end-of-line test systems,” in 2016 IEEE
14th International Conference on Industrial Informatics (INDIN), July
2016, pp. 1072–1077.

[8] S. Vöst and S. Wagner, “Trace-based test selection to support continuous
integration in the automotive industry,” in 2016 IEEE/ACM International
Workshop on Continuous Software Evolution and Delivery (CSED), May
2016, pp. 34–40.

[9] P. Caliebe, T. Herpel, and R. German, “Dependency-based test case
selection and prioritization in embedded systems,” in 2012 IEEE
Fifth International Conference on Software Testing, Verification and
Validation, April 2012, pp. 731–735.

[10] L. Krejčı́ and J. Novák, “Model-based testing of automotive distributed
systems with automated prioritization,” in 2017 9th IEEE International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), vol. 2, Sept 2017, pp.
668–673.

[11] R. Lachmann, S. Lity, M. Al-Hajjaji, F. Fürchtegott, and I. Schaefer,
“Fine-grained test case prioritization for integration testing of
delta-oriented software product lines,” in Proceedings of the 7th
International Workshop on Feature-Oriented Software Development,
ser. FOSD 2016. New York, NY, USA: ACM, 2016, pp. 1–10.
[Online]. Available: http://doi.acm.org/10.1145/3001867.3001868

[12] M. A. Al Mamun and J. Hansson, “Reducing simulation testing
time by parallel execution of loosely coupled segments of a test
scenario,” in Proceedings of International Workshop on Engineering
Simulations for Cyber-Physical Systems, ser. ES4CPS ’14. New
York, NY, USA: ACM, 2007, pp. 33:33–33:37. [Online]. Available:
http://doi.acm.org/10.1145/2559627.2559635

[13] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria, “Test
case prioritization of configurable cyber-physical systems with
weight-based search algorithms,” in Proceedings of the Genetic and
Evolutionary Computation Conference 2016, ser. GECCO ’16. New
York, NY, USA: ACM, 2016, pp. 1053–1060. [Online]. Available:
http://doi.acm.org/10.1145/2908812.2908871

[14] S. Kangoye, A. Todoskoff, M. BARREAU, and P. GERMANICUS,
“Mc/dc test case generation approaches for decisions,” in Proceedings of
the ASWEC 2015 24th Australasian Software Engineering Conference,
ser. ASWEC ’ 15 Vol. II. New York, NY, USA: ACM, 2015, pp. 74–80.
[Online]. Available: http://doi.acm.org/10.1145/2811681.2811696

[15] R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann,
“Effective test suites for mixed discrete-continuous stateflow
controllers,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ser. ESEC/FSE 2015. New
York, NY, USA: ACM, 2015, pp. 84–95. [Online]. Available:
http://doi.acm.org/10.1145/2786805.2786818

[16] P. M. Kruse, J. Wegener, and S. Wappler, “A highly configurable
test system for evolutionary black-box testing of embedded
systems,” in Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, ser. GECCO ’09. New
York, NY, USA: ACM, 2009, pp. 1545–1552. [Online]. Available:
http://doi.acm.org/10.1145/1569901.1570108

[17] F. Merz, C. Sinz, H. Post, T. Gorges, and T. Kropf, “Bridging the
gap between test cases and requirements by abstract testing,” Innov.
Syst. Softw. Eng., vol. 11, no. 4, pp. 233–242, Dec. 2015. [Online].
Available: http://dx.doi.org/10.1007/s11334-015-0245-7

[18] J. S. Eo, H. R. Choi, R. Gao, S. y. Lee, and W. E. Wong, “Case study
of requirements-based test case generation on an automotive domain,”
in 2015 IEEE International Conference on Software Quality, Reliability
and Security - Companion, Aug 2015, pp. 210–215.

[19] R. Lachmann and I. Schaefer, “Towards efficient and effective testing
in automotive software development,” in Lecture Notes in Informatics
(LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI),
vol. P-232, 2014, pp. 2181–2192, cited By :2. [Online]. Available:
www.scopus.com

[20] S. Siegl, K. S. Hielscher, and R. German, “Modeling and statistical
testing of real time embedded automotive systems by combination
of test models and reference models in matlab/simulink,” in 2011
21st International Conference on Systems Engineering, Aug 2011, pp.
180–185.

[21] R. Awedikian and B. Yannou, “Design of a validation test process of
an automotive software,” International Journal on Interactive Design
and Manufacturing, vol. 4, no. 4, pp. 259–268, 2010, cited By :2.
[Online]. Available: www.scopus.com

[22] R. Awedikian, B. Yannou, P. Lebreton, L. Bouclier, and M. Mekhilef,
“A simulated model of software specifications for automating functional
tests design,” in Proceedings DESIGN 2008, the 10th International
Design Conference, 2008, pp. 561–570, cited By :1. [Online]. Available:
www.scopus.com

[23] Z. Jiang, X. Wu, Z. Dong, and M. Mu, “Optimal test case generation
for simulink models using slicing,” in Proceedings - 2017 IEEE
International Conference on Software Quality, Reliability and Security
Companion, QRS-C 2017, 2017, pp. 363–369. [Online]. Available:
www.scopus.com

[24] D. Holling, A. Hofbauer, A. Pretschner, and M. Gemmar, “Profiting
from unit tests for integration testing,” in Proceedings - 2016
IEEE International Conference on Software Testing, Verification and
Validation, ICST 2016, 2016, pp. 353–363, cited By :1. [Online].
Available: www.scopus.com

[25] M. Klas, T. Bauer, A. Dereani, T. Soderqvist, and P. Helle,
“A large-scale technology evaluation study: Effects of model-based
analysis and testing,” in Proceedings - International Conference on
Software Engineering, vol. 2, 2015, pp. 119–128, cited By :4. [Online].
Available: www.scopus.com

[26] J. Lasalle, F. Peureux, and J. Guillet, “Automatic test concretization to
supply end-to-end mbt for automotive mechatronic systems,” in 2011
International Workshop on End-to-End Test Script Engineering, ETSE
2011 - Proceedings, 2011, pp. 16–23, cited By :4. [Online]. Available:
www.scopus.com

[27] A. Bansal, M. Muli, and K. Patil, “Taming complexity while gaining
efficiency: Requirements for the next generation of test automation
tools,” in AUTOTESTCON (Proceedings), 2013, pp. 123–128, cited By
:1. [Online]. Available: www.scopus.com

[28] F. Lindlar and A. Windisch, “A search-based approach to functional
hardware-in-the-loop testing,” in Proceedings - 2nd International
Symposium on Search Based Software Engineering, SSBSE 2010, 2010,
pp. 111–119, cited By :7. [Online]. Available: www.scopus.com

[29] U. Kanewala and J. M. Bieman, “Testing scientific software:
A systematic literature review,” Inf. Softw. Technol., vol. 56,
no. 10, pp. 1219–1232, Oct. 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2014.05.006

6th International Workshop on Quantitative Approaches to Software Quality (QuASoQ 2018)

Copyright © 2018 for this paper by its authors. 58

