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Abstract. An optimized parallel algorithm is constructed for solving
the nonlinear inverse gravimetry problem of finding several boundary
surfaces between layers in multilayered medium. The algorithm is based
on the modified nonlinear conjugate gradient method with weighting
factors. The efficient implementation for GPU was developed. A model
problem with synthetic gravitational data was solved.
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1 Introduction

The problem considered in this paper is finding several interfaces between layers
in a multilayered medium using known gravitational data [1, 2]. This problem
is described by a nonlinear integral Fredholm equation of the first kind; so, it
is ill-posed. The real gravity measurements are carried out over a large area
producing the large-scale grids. Processing the gravitational data is a time con-
suming process and requires a lot of memory. So, it is necessary to develop
parallel algorithms for parallel computing systems.

In works [3, 4], for solving the structural gravimetry problem, efficient parallel
algorithms based on the modified conjugate gradient method were proposed and
implemented multicore CPUs. The modification is based on approximation of the
Jacobian matrix by calculating only significant elements. This method reduces
the computation time in comparison with the full calculation approach.

Here, we construct a parallel algorithm on the basis of this method and
implement it for GPUs using the CUDA technology.

We compare the CPU and GPU implementations in terms of computation
time in solving the model problem with synthetic gravitational data.

? This work was financially supported by the Ministry of Education and Science of
the Republic of Kazakhstan (project AP 05133873).
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2 Statement of the Inverse Gravity Problem for the
Model of Multilayered Medium

We assume that the lower half-space is composed of several layers with constant
densities, which are separated by the sought surfaces Sl, l = 1..L, where L is the
number of boundary surfaces (see, Fig. 1).

Fig. 1. Model of multilayer medium

The gravitational field due to this half-space is equal to the sum of the
gravitational fields due to each surface. Let the boundary surfaces be specified
by the functions z = ζl(x, y), let the density contrasts on them be ∆σl, and
let the surfaces have the horizontal asymptotic planes z = Hl. The field ∆g
produced by the superposition of the boundary surfaces and measured on the
Earth’s surface z = 0 is found by the following equation (with accuracy up to a
constant term of summation) [1]:
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∆σl
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(x− x′)2 + (y − y′)2 + ζ2(x′, y′)
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(x− x′)2 + (y − y′)2 + ζ2(x′, y′)

)
dx′dy′ = ∆g(x, y, 0),

(1)

where f is the gravitational constant.
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This equation is the Fredholm nonlinear equation of the first kind of functions
ζl and is ill-posed: it has a nonunique solution which unstably depends on the
initial data.

After the discretization of equation (1) on the rectangular grid n = M ×N ,
where the right-hand side ∆g(x, y, 0) is given, and the approximation of the
left-side integral operator A(ζ1, ..., ζl) by the quadrature rules, we obtain the
vector of the right-hand side F with the length n, the combined surfaces vector
z = [ζ1(x1, y1), ..., ζ1(xM , yN ), ..., ζ2(x1, y1), ..., ζ2(xM , yN ), ..., ζL(xM , yN )] with
the length Ln, and the system of nonlinear equations having the form

A(z) = F. (2)

3 Algorithm for Solving the Inverse Problem

In this work, to solve problem (2), we use the approach based on the modified
linearized conjugate gradient method with weighting factors [5].

This method has the following form:

zk+1 = zk − ψ 〈pk, S(zk)

‖A′(zk)− pk‖
pk,

pk = vk + βkpk−1, p0 = v0,

βk = max
〈vk, vk − vk−1〉
‖vk−1‖

, 0

v = γ ◦ S(z),

S(z) = A′(z)∗(A(z)− F ),

(3)

where zk is the solution estimate at kth iteration, ψ is the damping factor, γ is
the vector of weighting factors, A′(z) is the Jacobean matrix of the discretized
integral operator A(z), ◦ is operation of componentwise vector multiplication.

In this work, we propose the following rules for selection of the weighting
factors:

[F1, ..., FL]→ [f1, ..., fLn]→ [γ1, ..., γLn],

Fl → [γn(l−1), γn(l−1)+1, ..., γnl],

γl =

√
f2i + µ

max
i=1..n

{
√
f2i + µ}

, 0 < µ < 1,

(4)

where µ is the smoothing parameter.

The fields Fl are extracted from the total field F using heightwise transfor-
mation technique from [6].

The condition ‖A(z)− F‖ / ‖F‖ < ε for sufficiently small ε is used as the
termination criterion for the iterative process.
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4 Numerical Implementation

In works [3, 4], the efficient technique for reducing the computing time was pro-
posed and implemented. The main idea is to drop out small elements and replace
matrix A′ with the block-band matrix A′ as shown in Fig. 2. The elements inside
each square block depend on terms (x− x′) and (y − y′). Thus, the farther the
matrix element is from the main diagonal of block, the less its value is. For each
block, we get the bandwidth parameter 0 < βl ≤ 1 by automatic adjustment
procedure. First, we find the maximal element amax

l of the block. To find it, we
just need to look over the main diagonal of the block. Then, we set the parame-
ter βl in such way that the resulting band matrix elements would be larger then
some threshold, i.e. aij > θamax

l for the threshold parameter θ.

Fig. 2. Scheme of matrix structure

5 Parallel Implementation for GPU

For solving the inverse problem, the parallel algorithm was developed for graphics
processor utilizing the CUDA technology.

Most expensive part is calculation of the Jacobian matrix A′ and vector A(zk)
at each iteration. The matrix and vector are divided into a number of fragments,
and each fragment is processed by its own thread. The elements of the Jacobian
matrix are calculated on-the-fly, which means that the value of an element is
computed when calling this element, without storing it in memory.

The adjustment of the kernel execution parameters for the grid size is an
important problem. In previous works [7, 8], we implemented the original method
for automatic adjustment of parameters. For the reference 128 × 128 grid and
M2090 GPUs, the optimal parameters were found manually. For the grid sizes
divisible by 128, the reference parameters are multiplied by the coefficient. When
using multiple GPUs, the x dimension is divided by the number of GPUs; i.e.,
the number of threads in the block is reduced while number of blocks in the grid
remains constant.

This imposes some constraints on the input data and GPUs configuration:
grid size should be divisible by 128 (128, 256, 512, 1024 ...) and GPUs number
should be a power of 2 (1, 2, 4, 8, ...).
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6 Numerical Experiments

To test the constructed modified algorithm and to compare it with the unmodi-
fied one in terms of execution time, we use the model problem of reconstructing
three boundary surfaces on a large grid (512 × 512 nodes) using the quasi-real
data.

The model gravitational field shown in Fig. 3 was obtained by solving the
forward problem using three surfaces S1, S2, S3 (see, Fig. 4a) with asymprotic
planes H1 = 10km, H2 = 20km, H3 = 30km from work [3] and density contrasts
∆σ1 = ∆σ2 = ∆σ3 = 0.2g/cm3. This surfaces were obtained from gravity
maps [9] for an area of 600x600 km near Ekaterinburg, Russia.

Fig. 3. Total gravitational field

The inverse problem was solved using the eight-core Intel Xeon E5-2650 pro-
cessor and NVIDIA Tesla M2090 GPUs) incorporated in Uran parallel computing
system. The Jacobian matrix for this problem is 262144×786432. The threshold
parameter θ = 0.1 was used, which gives the bandwidth parameters β1 = 0.078,
β2 = 0.094, β3 = 0.1. The smoothing parameter was µ = 0.2. For the stopping
criterion, ε = 0.1 was used. The algorithm took 90 iterations.

The reconstructed surfaces S1, S2, S3 are shown in Fig. 4b. The relative errors∥∥Sl − Sl

∥∥ / ‖Sl‖ are lower than 1%.
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Fig. 4. Original surfaces (a) S1, S2, S3 and reconstructed surfaces (b) S1, S2, S3

(up to down)

The table contains the execution times Tm for various number m of Tesla
M2090 GPUs, relative speedup Sm = T1/Tm and efficiency Em = Sm/m. It also
contains computation time for eight-core CPU.

Table 1. Results of the numerical experiments

Devices Computation time Tm, minutes Speedup Sm Efficiency Em

1× M2090 30 1 1

2× M2090 16 1.88 0.94

4× M2090 8 3.75 0.93

8× M2090 4.13 7.24 0.9

Intel Xeon E5-2650 480

The implementation for multiple GPU demonstrates an excellent scaling; the
efficiency is more than 90% for eight GPUs.
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7 Conclusion

For solving the inverse gravimetry problem of finding several boundary surfaces
in multilayered medium, the parallel algorithm was constructed and implemented
for multiple GPUs using the CUDA technology. The algorithm is based on the
nonlinear conjugate gradient method and on the approach with weighting fac-
tors previously proposed by authors. The numerical implementation uses the
modification based on approximation the Jacobian matrix by dropping out the
less significant elements and to replacing the matrix by a block-band one.

The model problem of reconstructing three surfaces using the quasi-real grav-
itational data was solved on a large grid. The GPU implementation reduces the
computation time by two orders of magnitude in comparison with CPU. The
multi-GPU implementation demonstrates an excellent scaling and nearly 90%
efficiency.
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