CEUR-WS.org/Vol-2291/tutoriald.pdf

Formal Specification and Verification of System and Software Models
Ferhat Erata
UNIT Information Technologies R&D Ltd.
(ferhat@computer.org)

The complexity of software systems in safety critical domains (e.g., avionics and automotive) has
significantly increased over the years. To tackle with this complexity, development of such systems
requires various phases which result in several artifacts that are increasingly represented as models (e.g.,
requirement models, architecture models, and design models). To achieve model correctness and
thereby to increase software quality, formal verification of software models has become a promising
approach and received a considerable amount of attention in the last decade. Different methods and
tools exist in the literature that allow to specify models based on mathematical theories or formalisms
and to reason about the correctness properties.

In this tutorial, | am going to introduce two mainstream formal specification and formal analysis
techniques to ensure model correctness on an illustrative reactive system. The tutorial will be split into
three parts. The first part will immediately introduce to the audience the basic mathematical notions
required to model an abstraction of the example reactive system. The second part demonstrates how to
formally specify the system using two different formalisms: first-order relational logic (FORL), an
expressive logic with transitive closure supported by Alloy Analyzer and the logic of equality with
uninterpreted functions (EUF), a first-order logic with many well-supported tools (e.g., SMT solvers). The
final part presents finding correct instances and checking assertions written in these formalisms using
Alloy Analyzer (https://github.com/AlloyTools/) and Z3 SMT Solver (https://github.com/Z3Prover/z3). All
three parts are accompanied by live demonstrations.



mailto:ferhat@computer.org
https://github.com/AlloyTools/
https://github.com/Z3Prover/z3

