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Abstract. In this paper, we present a method for disparity map esti-
mation from a rectified stereo image pair. We proposed, a new neural
network architecture based on convolutional layers to predict the depth
from the stereo vision images. The Middlebury datasets were used to
train the network with a known disparity map in order to compare the
error of the estimated map.
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1 Introduction

One of the techniques that have shown potential for obtaining three-dimensional
(3D) information from two-dimensional (2D) images is the processing of stereo
images [1]. Images are commonly considered as 2D representations of the real
world (3D). Stereo vision by computer involves the acquisition of images with
two or more cameras moved horizontally to each other. In this way, different
views of a scene are recorded and can be processed for different applications
such as vehicle tracking [4], aircraft estimation and positioning [5], and auto-
matic adaptation systems that cover a wide range of applications [6], including
3D reconstruction or disparity map estimation.

Stereo vision tries to imitate the mechanisms that are made in the human
visual system and the human brain. A scene depicted with two horizontally dis-
placed cameras will get two slightly different projections of a scene. If these two
images are compared, additional information can be reached, such as the depth
of a scene. This process of extracting the three-dimensional structure of a scene
from pairs of stereo images is called computational stereo, and the resul is gen-
erally a disparity map which is a map of the depth or distance at which the
objects of a scene are located [2].

In recent years, numerous algorithms and applications for the estimation of
disparity maps have been presented. In [13] a method based on satellite images
is proposed to monitor trees and vegetation. The stereo matching algorithms
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are calculated to measure the disparity map based on stereo satellite images.
The estimation of the height of trees and vegetation near the base poles to the
depth map is inversely proportional to the disparity map. In [14] another appli-
cation for pedestrian detection is proposed based on the dense disparity map for
smart vehicles. The dense disparity map is used to improve pedestrian detection
performance. The method consists of several steps, detection of obstacle areas
using information of characteristics of roads and detection of columns, detection
of pedestrian areas using a segmentation based on dense disparity maps and
detection of pedestrians using the optimum characteristic.

The work of [15] is a investigation for object tracking were a stereoscopic
camera is used to detect objects, which makes it a low-cost solution for tracking
objects. Its objective is to detect objects in a video sequence and track them
throughout the video without prior knowledge about the objects. Calculate the
disparity map using a pair of stereophonic images. Then, the disparity map is
subjected to a depth-based segmentation to detect object blobs and the corre-
sponding region in rectified stereo-image is the object of interest.

In [16] an efficient algorithm is presented to optimize the performance of a
stereoscopic vision system and accurately relate the calculated disparity map
with the real depth information.

With the new technologies and artificial intelligence in [17] a methodology
for the detection of robust obstacles in outdoor scenes for autonomous driving
applications is proposed using a multi-value stereo disparity approach. The dis-
parity computation suffers a lot from reflections, lack of texture and repetitive
patterns of objects. This can lead to incorrect estimates, which may introduce
some bias in the obstacle detection approaches that make use of the disparity
map. To overcome this problem, instead of a disparity estimate of a single value,
a new research that uses a diversity of candidates for each point of the image is
proposed. These are selected based on a statistical study characterized by the
performance of different parameters: number of candidates and the distance be-
tween them compared to the real value of the disparity. It continues creating a
location map from which the estimation of the obstacles is obtained.

In [18] explain different phases to perform the depth estimation: First they
perform an extraction of characteristics, an initial estimation and a final refine-
ment of the estimated depth.

Obtain the main characteristics of the two input images, stereo images left
and right, and the final refinement is done in a main block of the network with
two refinement sub-networks. The network contains a pair of convolution layers
and a pair of deconvolution layers to perform the sampling at the output.
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This subnetwork structure generates a depth map through an architecture
that encodes and decodes information, inspired by the DispNetCorrlD network
[19].

The innovative aspect of the research in [20] is that for the first stage the
network described includes modules to perform deconvolution in addition to the
traditional which leads to estimate the disparity with the same size as the images
that are being used for the input. In the second stage, which is refinement, they
propose residual learning used in [21].

In [22] propose a new optimization method that uses strong smoothing re-
strictions obtained in a neural network. The goal for this is to soften the output
disparity map in a robust manner. The first step in this research was to define
the CNN architecture, called DD-CNN, to classify if the disparities are discon-
tinuous. The training of this architecture was carried out with real data from
Middlebury stereo data [23]. In the next step they define an energy function
composed of a term of data obtained with the method of [24] and a term that
penalizes disparity differences.

Finally in [25] a network is developed with a dual structure. Each of the struc-
tures takes an input image that passes through a finite set of layers followed by
a normalization and a rectified linear unit. In their experiments, different filters
were tested per layer and the parameters were shared between the two struc-
tures. For the training, small kernels of the images extracted from a set of pixels
were randomly used. Providing a diverse set of examples and it was considered
an efficient method in memory.

For this research it is proposed a new architecture based on convolutional
networks, for the training of the network we will use the stereo images from the
Middlebury database [3] and the disparity map results obtained in [7].

2 Theory

2.1 Convolutional Network

Convolutional networks are composed of a specific type of connections for data
processing that have known properties. Examples can be highlighted from time
series, which is considered a grid of one dimension with a regular time de-
fined, and images, which is the same case as time series with more than one
dimension ordered at specific points. CNN (Convolutional Neuronal Network)
has demonstrate a high level of success in field applications. It is called the
convolutional network because it performs the mathematical operation called
convolution within neurons. Convolution is a specialized type of linear opera-
tion. Convolutional networks are simply neural networks that use convolution
instead of the general multiplication of matrices in at least one of their layers.
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In its most general form, convolution is an operation in two functions of an ar-
gument of real value.

In machine learning applications, the input is usually a multidimensional ar-
ray of data, and the core is usually a multidimensional array of parameters that
are adapted by the learning algorithm.

The convolution takes advantage of three important ideas that can help to
improve a learning system: dispersed interactions, shared use of parameters and
equivalent representations. In addition, convolution provides a means to work
with entries of variable size. Traditional neural network layers use matrix multi-
plication through a parameter matrix with a separate parameter that describes
the interaction between each input unit and each output unit. However, convo-
lutional networks often have scattered interactions. This is achieved by making
the kernel smaller than the input.

CNN are usually developed in the following stages: First, a defined number of
convolutions are made at the same time to produce a group of linear activations.
In the next stage, each activation is executed with an activation function that
is not linear. This stage could be defined as the detector stage. The third stage
uses a grouping function with the objective of modifying the output of each layer.

Convolutional Layer

Convolution i
Input Layer stage Detector stage Pooling stage Next Layer

Fig. 1. Components of a typical convolutional network

A grouping function replaces the output of the network at a given location
with a summary statistic of the nearby outputs.

In all cases, the grouping helps to make the representation almost invariant
for small translations of the entry. The invariance to translation means that, if
we translate the entry by a small amount, the values of most of the grouped
outputs do not change [10].
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3 Proposed architecture

The proposed convolutional network can be seen in Figure 2, the architecture
of the network is as follows: The inputs, pair of stereo images, are individually
processed through 3 convolutional layers, the first 2-D convolutional layer is 32
filters with a 323 kernel returning the same size of the images. The output of
the first layer continue with a MaxPooling with a size of 2, followed with an-
other convolutional layer of 62 filters with a 323 kernel and the output with a
MaxPoling also with a size of 2 and finally a convolutional layer with a size of 92
filters and a 3z3 kernel is applied to obtain an image in its original size of 96296.
This process is applied independently to each image, the outputs are combined
to apply another 3 convolutional layers.

The first convolutional layer has 62 filters with a 323 kernel followed by a
UpSampling with a size of 2x2. At the exit, another convolutional layer with a
size of 22 filters and a 3x3 kernel is applied to the output and another UpSam-
pling with a size of 222, finally the last convolutional layer of 1 filter and a 22
kernel is applied. All the activation functions used in the convolutional layers is
the rectified linear unit (ReLU).

MaxPool MaxPool
ing2D ing2D

Left
imaze || ConvaD Conv2D Conv2d UpSampl UpSampl

g ing2D ing2D

Output
Input MaxPool MaxPool @ Conv2D Conv2D Conv2D | —»
ing2D ing2D

Rigth Conv2D »{ Conv2D Conv2d
Image

Fig. 2. Architecture of the convolutional network used in this research

3.1 Data preprocessing

In this research we used the images of the database of Middlebury [3]. The im-
ages of the database are in color, and consist of a pair of stereo images as show in
Figure 3. The original database images were pre-processed, a change was made
in the size of the images in such a way that all the images had a size of 92x92,
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the main idea of leaving the square images is to speed up the computations and
to lower memory requirements.

Aloe left image Aloe right image

Fig. 3. Pair of images, left and right, from the database

Since the neural networks need a large amounts of data to work effectively,
data augmentation was used to increase the number of images in the data set.
For data augmentation, operations of translation, rotation, and scaling were used
to increase the database to 500 images.

3.2 Metrics

The metrics that will be used for the evaluation of this research will be the
Peak Signal to Noise Ratio (PSNR) and the Structural Similarity Index (SSIM).
These metrics have been used as a reference point for the comparison of input
images and output images in the evaluation of image quality. The PSNR uses
the Mean Square Error (MSE), the MSE is calculated between the average of
the original intensity and the intensity of the output image and is given by:

e(m,n)? (1)

Where e(m,n) is the difference of the error between the original image and
the output image PSNR is the mathematical measure of image quality based on
the pixel difference of two images. And it is defined by:

52

MSE

PSNR = 10log

Where s = 255 for an 8-bit image [11].
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For the SSIM, Wang[12], proposed the Structural Similarity Index as an im-
provement of the Universal Image Quality Index (UIQI). The SSIM is calculated
as follows.

The Input and output images are divided into blocks then the blocks are
converted into vectors, two means, two standard derivations and one covariance
value are computed from the images.

Then the luminance, contrast, and structure comparisons based on statistical
values are computed, the structural similarity index measure is given by:

(2Mmﬂy + Cl)(Uzy + 02) (3)

SSIM(y) = e a2 + oy +c2)

Where pi, 11, denotes the mean values of original and distorted images. And
0,0y denotes the standard deviation of original and distorted images, and o0,
is the covariance of both images, ¢; and ¢y are constants. [11].

The image quality MSSIM is obtained by calculating the mean of SSIM val-
ues given by:

P
1
MSSIM = - ; SSIM, (4)

Where p is the number of sliding windows [11].

4 Results

Experiments were made using a computer with microprocessor Intel (R) Core
(TM) i5-2410M of 2.30 GHz, 8GB of RAM GPU NVIDIA CUDA GeForce 315M
with a CNN training of 8 to 16 hours.

For the evaluation of our convolutional neuronal network, the following im-
ages were used: a) Bowling fig 4, b) Midd fig 5, ¢) Lamp fig 6, d) Monopoly fig
7 and e) Baby fig 8. The left image and the right image were used as input for
each estimation of the disparity map.
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Bowling left image Bowling right image
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=

Fig. 4. Images to test the CNN Bowling from the database

Midd left image Midd right image

Fig. 5. Images to test the CNN Midd from the database
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Lamp left image Lamp right image

Fig. 6. Images to test the CNN Lamp from the database

Monopoly left image Monopoly right image

Fig. 7. Images to test the CNN Monopoly from the database

35
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Baby left image Baby right image

Fig. 8. Images to test the CNN Baby from the database

In the table 1 the PSNR and SSIM results are shown between the original
disparity map and the estimated disparity Map with our convolutional neuronal
network. With these values it can be seen that PSNR values are not the most
optimal but with the SSIM it shows optimal similarity values between the images.

Table 1. Results for the test images

PSNR.  [SSIM
Bowling |57.3966977 0.93
Midd |57.5238763| 0.83
Lamp |57.7759308| 0.91
Monopoly|58.7132492| 0.82
Baby | 60.440848 | 0.92

In the images 9, 10, 11, 12 and 13 it can be clearly seen how the convolutional
neural network performed in the estimation of the disparity map. The output
images of our network show low definition of the edges with respect to the original
disparity map, however the accuracy of the estimate has an acceptable level.
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Original Disparity Map Estimated Disparity Map with our CNN

MSE: 2.16, 55IM: 0.93 MSE: 2.16, 55IM: 0.93

Fig. 9. Bowling disparity map original and estimated

Original Disparity Map Estimated Disparity Map with our CNN

20 0 I &0 B0 100 20 0 0 @ © 8 10
MSE: 2 52, SSIM- 0,83 MSE: 2.52, SSIM- 0.83

Fig. 10. Midd disparity map original and estimated

Original Disparity Map Estimated Disparity Map with our CNN

20

T
40 60 B0 100 20 20 40 60 80 100
MSE: 2.40, 55IM: 0.91 MSE: 2.40, 55IM: 0.91

Fig. 11. Lamp disparity map original and estimated
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Original Disparity Map Estimated Disparity Map with our CNN

20

40
60
80
-20 0 W @ 8 100 20
MSE: 2.65, 55IM: 0.82 MSE: 2,65, 5SIM: 0.82
Fig. 12. Monopoly disparity map original and estimated
° Original Disparity Map Estimated Disparity Map with our CNN
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Fig. 13. Baby disparity map original and estimated

5 Conclusions

In this research, it was demonstrated how a new architecture of a convolutional
network can estimate the disparity map between stereo images. With the ob-
tained results it can be observed how a post processing of the output images
could help the definition of the edges in the images, which seems to be the main
problem to be solved as a next step in the investigation in order to obtain results
more precise.

The limitation of hardware was another problem for this research, the train-
ing times of the convolutional neuronal network was from 8 to 16 hours. In
addition, it can be concluded how applications for stereo vision systems can
be solved by convolutional neural networks, as future work we plan to apply
this neural network to stereo vision in real time video for obstacles detection to
continue searching applications in stereo vision systems.
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