
Exploring EPCG in The Witness

Nathan R. Sturtevant
Department of Computing Science

University of Alberta
Edmonton, AB, CANADA

nathanst@ualberta.ca

Abstract
This paper provides an examination of how Exhaustive Pro-
cedural Content Generation (EPCG) can be used to explore
the creation of new content for games. We study the puzzles
in the game The Witness along with an aesthetic for game de-
sign proposed by Jonathan Blow and Marc ten Bosch, show-
ing how EPCG is well-suited to answering game design ques-
tions and for helping designers find unique content for their
games.

Introduction
Procedural content generation (PCG) in games seems to
have great potential. One could imagine a never-ending
stream of deep and interesting games produced at little or
no cost. But, games like No Man’s Sky have shown that bil-
lions of combinations of content can still lead to repetitive
and uninteresting play, and that it is easy for expectations to
outstrip current technologies. That isn’t to say that PCG will
not one day deliver, but, similar to how updates to No Man’s
Sky have improved the game, more research is needed to
better understand how to deliver compelling and interesting
experiences.

One suggestion to improve PCG has been to involve a de-
signer in the process, called mixed-initiative content creation
(Liapis, Smith, and Shaker 2016). There are many ways that
a computer can assist human designers, such as by ensur-
ing that design constraints are enforced and that all areas
in levels are reachable. This effort is primary supported by
computer-aided design (CAD) tools.

Recent research (Sturtevant and Ota 2018) proposed a
subfield of PCG called Exhaustive PCG, or EPCG. In
this sub-area content is generated exhaustively or semi-
exhaustively to fully explore a design space. In this paper
we use a mixed-initiative form of EPCG to explore and an-
swer questions about game design. By answering questions
about all available content, an EPCG system is able to sug-
gest meaningful content that can be selected for use in a
game.1 For instance, we might ask to see all puzzles of a
certain size that have a single solution.

1Taken broadly, EPCG includes some generic constraint pro-
gramming or answer-set programming solvers, as such solvers may
perform an exhaustive search with pruning (making them semi-
exhaustive) over variables and values. However, these generic lan-
guages do not easily support many types of constraints that are used

While in traditional PCG it is important to evaluate the
output of content generators (Shaker, Smith, and Yannakakis
2016), in EPCG all content is potentially generated. Thus, it
is also important to focus on the questions that can be asked
about content, as these questions will determine the breadth
of content that is generated.

We use a design aesthetic from Jonathan Blow and Marc
ten Bosch to help focus the questions we ask about the avail-
able content.

A Matching Aesthetic
In a 2011 IndieCade presentation,2 Jonathan Blow and Marc
ten Bosch presented an aesthetic for game design which
aims to, in their words, “show a lot of truth, with minimum
contrivance.” They suggest that in this aesthetic the role of
a designer is to explore and reveal the truths about the uni-
verse more than to create a fun gameplay experience. They
outlined eight pieces of this aesthetic as follows:

1. Richness
2. Completeness
3. Surprise
4. Lightest Contrivance
5. Strength of Boundary
6. Compatibility of Mechanics
7. Orthogonality
8. Generosity

The goal is to (1) aim for the richest space of game de-
sign, where there is significant room to explore the space of
possible interactions between mechanics. Once that space is
identified, the designer must (2) completely explore the in-
teractions within the game before (3) editing and pruning
the interactions to be left with a set that are interesting and
surprising for the players. This aesthetic prefers mechanics
that are (4) simple (with unnecessary complications) and (7)
orthogonal (without overlapping functionality). At a broader
level, the total set of mechanics explored should not overlap
or be unbalanced, forming an interesting boundary between

in games, such as the region constraints we discuss in this paper. In
these situations, a custom solver may be more efficient and flexible.

2http://the-witness.net/news/2011/11/designing-to-reveal-the-
nature-of-the-universe/



(a) (b) (c)

Figure 1: A sample puzzle with two types of constraints (a), the natural solution a player might try first (b), and the solution to
the puzzle (c).

different puzzles (5), and each new mechanic should inter-
act cleanly with existing mechanics (6). For the remainder
of the paper we refer to the aesthetic as a whole as the BtB
(Blow and ten Bosch) design aesthetic, and when referring
specific aesthetic points, we will refer to them as (BtBN ),
where N is the aesthetic we are referring to.

In the BtB aesthetic, the goal isn’t to explicitly make hard
puzzles, but instead to look for truth about the design conse-
quences in the space being explored and to illustrate it with
a selection of puzzles, although the aesthetic is not limited
to puzzles. This can be done in many ways; one such way
would be to present a set of puzzles that follow a pattern and
then to break that pattern to help the player to learn about
the interactions of the mechanics.

EPCG broadly speaking is designed to exhaustively ex-
plore design spaces in ways that other more selective tech-
niques do not. Thus, EPCG is well suited for the BtB aes-
thetic. For instance, due to its exhaustive nature, EPCG can
explore the full consequences of different design decisions
(BtB2). It can also explore how orthogonal constraints fit
together (BtB6 and BtB7). But, EPCG does this best in a
mixed-initiative process with a designer that is evaluating
and editing content to maximize surprise and to minimize
contrivance (BtB3 and BtB4).

Design in The Witness
In previous work we explored a single puzzle type from
The Witness (Sturtevant and Ota 2018), a 2016 game by
Jonathan Blow and Thekla Inc. In this paper we continue
that exploration by looking at different puzzle constraints
and how their mechanics can be put together using an EPCG
approach.

To begin, we explain the basic mechanics of the puzzles
in the game. A sample puzzle for game is shown in Figure
1, with the puzzle in part (a) and the solution in part (c). The
goal of each puzzle is to trace a self-avoiding walk (Knuth
1976) from the start (the circle in the lower-level corner) to
the goal (the notch in the upper-right corner) that obeys the
constraints of the puzzle. Symbols are placed on the puz-
zle to indicate constraints on the path. This puzzle contains
both types of constraints we study in this paper. The small
hexagons are ‘must cross’ constraints, which indicate that
the final solution path for the puzzle must cross that point.
Hexagons can be placed on vertices or edges.

Table 1: Number of paths through a grid

height width count
2 2 12
2 3 38
3 3 184
3 4 976
4 4 8,512
4 5 79,384
5 5 1,262,816

The large rounded squares are spatial constraints. In the
final solution, the puzzle is divided into one or more regions
by the solution path. No two spatial constraints of different
colors can be in the same region in the final puzzle. This par-
ticular puzzle has black and white spatial constraints which
must be separated by the path. The solution path splits the
puzzle into two parts, with each part having one of the two
spatial constraints.

This puzzle is interesting because visually the spatial con-
straints are grouped with the lowest must-cross constraint.
Additionally, the spatial constraints are larger than the must-
cross constraints, so one might focus on finding a path that
satisfies these first. Thus, a natural first path to follow is what
is shown in Figure 1(b). But, this path does not lead to a
solution. So, this puzzle subverts the natural inclination of
someone who is used to solving such puzzles and thus con-
tains surprise (BtB3).

The number of self avoiding paths for a given table size
is shown in Table 1. This grows exponentially, but there are
efficient algorithms for computing the number of possible
paths. The exponential growth is useful, because it elimi-
nates the possibility of someone using brute-force to find a
solution and suggests that there might be a rich space of so-
lutions to explore (BtB1).

We employ a few general strategies when searching for in-
teresting puzzles that lend themselves to the BtB aesthetic.
First, since we are using EPCG, we fundamentally get a
measure of completeness (BtB2). Within each portion of
the space we explore, our search will be exhaustive. Sec-
ond, related to using the lightest contrivance (BtB4), we will
look for puzzles with as few constraints as possible. Plac-
ing more constraints on the board than is needed or using



(a) (b) (c) (d) (e)

Figure 2: Sample 3× 4 and 4× 4 puzzles. The solution to (b) is in (d), and the solution to (c) is in (e).

a larger board than is needed adds complexity but, for the
puzzles analyzed here, does not significantly increase the
quality of the puzzles. Finally, we prefer puzzles with fewer
solutions, preferably only one. With fewer solutions play-
ers must demonstrate that they exactly understand the con-
straints given, which seems to give more opportunities for
surprise (BtB3), although this may be specific to the partic-
ular puzzles studied here.

Must-Cross Constraints
To begin, we explore the must-cross constraints. First, how
many constraints are there? In a puzzle width w and height
h, where the puzzle in Figure 1 is 3× 3, there are w × (h+
1) + (w + 1) × h must-cross constraints that can be placed
on edges (the right two constraints). An additional (w+1)×
(h+ 1) can be placed on vertices (the upper left constraint).
Thus, the total number of positions where a constraint can be
placed is 3wh+2w+2h+1. If we then want to place k must-
cross constraints onto a board with n possible constraints,
there are

(
n
k

)
ways to do so.

Our procedure for finding interesting puzzles works as
follows. For each possible arrangement of constraints, we
count how many legal solutions there are for a given puz-
zle. We then keep all puzzles with the minimum number
of solutions. Initially we stored all such paths, but later we
switched to only storing the longest paths. Longer paths may
seem more contrived, but that piece of the aesthetic is point-
ing more towards mechanics, and we found that the longer
paths tend to contain elements of surprise (BtB3) not found
in shorter paths. For instance, consider the puzzle in Figure
2(a). Here the constraints are uninteresting as they only al-
low a single simple path to the goal.

In the search process we gain some efficiency by throwing
out a puzzle once we know that it is worse than the best puz-
zle found thus far. While significantly better performance
could be achieved, our simple code was sufficient for our
purposes – we able to explore all 4 × 4 boards with up to
6 constraints on each board in less than 1000 seconds, as
shown in Table 2. In this table, the max column is the number
of locations where constraints can be placed. The # column
is the number of ways to place constraints. Note that for each
possible placement, all combinations in Table 1 must be con-
sidered to compute the number of valid paths. That is, on a

3×3 board with 3 constraints we look at 9,880 possible puz-
zles. For each possible puzzle we look at 184 actual paths.
So in the code we analyze 9, 880 · 184 = 1, 817, 920 puzzle
and path combinations together on a 3×3 board with 3 con-
straints. The min column is the minimum number of unique
solutions for any puzzle that is generated, and the time col-
umn is the total time required to generate all puzzles and
count the number of solutions. For the work in this paper,
the time required to implement and test more efficient code
would be larger than the time spent finding the solutions.

Our exploration revealed that 3× 3 puzzles were too sim-
ple to be interesting. On the 3 × 4 board we found a few
interesting puzzles, and these were not improved on signif-
icantly when moving to the 4 × 4 board. In Figure 2(b) we
show one interesting puzzle with the solution in (d). The
puzzle is interesting because the natural tendency is to draw
a path directly towards the constraints, but the solution ini-
tially winds around the outside. When solving for 4×4 puz-
zles with 5 constraints on the board, there were no puzzles
with unique solutions. With 6 constraints on the board we
found the smaller puzzle from Figure 2(b) repeated with a
single additional constraint, shown in Figure 2(c). As this
does not bring significant new depth to the understanding of
this puzzle and solution lengths were already maximal for
the board size, we did not explore further, although for com-
pleteness it would be worthwhile to study puzzles with 7
constraints.

If we were to continue to explore these puzzles we would
consider what happens when the board is filled with must-
cross constraints with very few open locations. (The com-

Table 2: Number of must-cross constraints

height width max # total min sol. time
3 3 40 3 9,880 4 0.01s
3 3 40 5 658,008 1 1.51s
3 4 51 3 20,825 16 0.20s
3 4 51 5 2,349,060 1 5.42s
4 4 65 3 43,680 190 0.59s
4 4 65 4 677,040 27 6.01s
4 4 65 5 8,259,888 2 73.41s
4 4 65 6 82,598,880 1 969.74s



(a) (b) (c) (d)

Figure 3: One interesting set of separability constraint puzzles

plexity of putting must-cross constraints in all but k loca-
tions is the same as placing them in k locations.) In this case
the constraints at the intersections of paths should be primar-
ily used, as they give more options for movement. We could
also explore the use of cannot-cross constraints, which are
just broken lines in the game that cannot be crossed. There
are several optional puzzles in The Witness that explore these
together. Beyond this, there does not seem to be significant
additional depth that can be found in must-cross constraints
alone.

Region Constraints
As a second piece of exploration we look at the region con-
straints in a similar manner to our study of must-cross con-
straints. In a w×h puzzle there are

(
wh
k

)
2k−1 ways to place

k pieces onto the board, assuming two colors. For symme-
try reduction the first piece placed is always black, and the
remaining pieces can be any color.

As before, to get a sense of the size of the problem we
show the number of combinations and minimum number
of paths for solving a puzzle in Table 3. Although there
are fewer puzzles for each board size, it is more expensive
to compute whether a solution is valid because it involves
dividing the board into regions; pre-computing the regions
would speed up this calculation.

One interesting set of puzzles were found on the 3 × 4
board size, shown in Figure 3. The puzzle in (a) with 6 pieces
has a natural beauty because of the placement of the pieces
and their colors. Puzzles (b)-(d) have pieces in the same lo-
cation in each puzzle, but the change in colors means that
the solution used to solve each puzzle is completely differ-
ent. (The solutions are in Figure 5 in the appendix.)

When describing the BtB aesthetic, Blow uses puzzles
with the region constraints to illustrate several design points
in the puzzles. The one point of completeness that is de-
scribed and used in the game that we do not explore here
is varying the location of the exit. Blow keeps the puzzles
almost fixed and varies the exit to produce different paths;
we do this with different colored constraints while keeping
the constraint locations fixed. It would not be difficult to add
start/goal locations as part of the EPCG exploration proce-
dure.

For this paper we did not deeply explore more than two

Table 3: Number of region constraints

height width max # total min time
3 3 9 3 336 14 0.01s
3 3 9 5 2,016 1 0.08s
3 4 12 3 880 87 0.24s
3 4 12 4 7920 20 0.59s
3 4 12 5 12,672 2 1.38s
4 4 16 3 4,480 820 6.25s
4 4 16 4 29,120 218 24.56s
4 4 16 5 69,888 74 74.36s
4 4 16 6 256,256 2 219.36s

colors or the use of even larger boards. Most puzzles gen-
erated with three colors can be simplified to use only two
colors, so further filtering is needed to find the interesting
three-color puzzles. We have seen larger user-generated puz-
zles with just region constraints that are difficult to solve, so
there is still room to explore region constraints on their own.
One way to quickly reduce computational times on much
larger boards is to only build puzzles with symmetric piece
placement.

Joint Must-Cross and Region Constraints
One point of the BtB aesthetic is that mechanics in games
should have orthogonal design (BTB7). In the case of the
constraints we are looking at in this paper, the constraints
are physically placed in different locations on the puzzle -
must-cross constraints are on paths, while region constraints
are in the spaces between paths. This means that both types
of constraints can be placed in the same puzzle, effectively
combining the mechanics together. We previously discov-
ered that small puzzles require too many constraints to pro-
duce puzzles with a single solution, and when a single so-
lution is produced the solution tends to be trivial. Here we
look at the impact of joining together the two mechanics.
We find more interesting puzzles with the combination of
constraints; it is an open question whether an interesting
phase-transition occurs as the number of types of constraints
is added to a puzzle (Gent and Walsh 1994).

Even adding a single must-cross constraint to a region
constrained puzzle can make a puzzle significantly more



(a) (b) (c) (d)

Figure 4: Puzzles with joint must-cross and region constraints

complicated. Our previous work (Sturtevant and Ota 2018)
studied how multiple puzzles can be combined together to
create a triple puzzle where one solution solves all three sub-
puzzles. That work did not take advantage of the orthogonal-
ity of constraints to use only a single puzzle with different
types of constraints. But, it did suggest that when combin-
ing puzzles, it is useful to look for individual puzzles with
the maximum number of solutions that, when combined to-
gether, only have a single solution. Although we did not use
this metric directly when building puzzles, we were able to
verify that it held for many puzzles.

There are 10,098,000 combinations of ways to place 2
must-cross and 4 region constraints on the 3× 4 board. This
takes 173.04s and leads to 485 unique puzzles (with max-
imum length and a single solution – there are 945 puzzles
when including the shorter solutions). We illustrate one such
puzzle in Figure 4(a). As with previous puzzles, this one is
interesting because the natural first actions do not lead to-
wards the solution.

On a 4x4 board there are 195,686,400 combinations of
ways to place 3 must-cross and 3 region constraints on a
4 × 4 board. This takes 5721.52s and leads to 72 puzzles
(with maximum length and two solutions each – there are
3020 puzzles when including the shorter solutions). We se-
lected a few of these puzzles and placed them in Figure 4(b)-
(d). All of these puzzles would be trivial to solve with just
the region constraints, because there are so few region con-
straints. Similarly, they would be trivial to solve with just
the must-cross constraints. But, when combined together,
the resulting puzzles are non-trivial to solve. There are of-
ten many puzzles with the same solution but slightly differ-
ent configurations of constraints. Part of the editing process
that is needed after exploring puzzles is removing puzzles
where the combinations of constraints do not seem to work
well together. The puzzle in Figure 4(c) is a strong puzzle
because the must-cross constraints interact closely with the
region constraints. But, the puzzle in in Figure 4(d) is poor
because the must-cross constraints are placed independently
from the region constraints, making it feel like two separate
puzzles instead of a single integrated puzzle. (The solution
can also be pieced together more independently.) Because
both of these puzzles have the same solutions, we would
only want one of them in practice.

Given further exploration, it would be worth deeply ex-
ploring larger puzzles with as few constraints as possible to
see if the use of two types of constraints is able to reduce
the total number of constraints required to make interest-
ing problems. It is also worth exploring together some of
the many other constraints available in the game to see what
new and interesting things can be learned through the EPCG
process.

As a preliminary test of the value of these puzzles we up-
loaded the puzzles in Figure 4(a) and (b) to a popular site for
The Witness puzzles3. The site keeps track of the most pop-
ular puzzles by ‘likes’, and within two days Figure 4(b) was
tied for the most popular puzzle of the previous two weeks
and Figure 4(a) was just one ‘like’ shy of Figure 4(b). While
further user studies are needed, this provides preliminary ev-
idence that users find these puzzles interesting to solve.

Summary
We would summarize the process we describe in this paper
as one of exploring the nature of the constraints in The Wit-
ness to see what puzzles arise from these constraints. This is
a mixed-initiative process, with a designer asking questions
about the size of the board, the number of solutions, etc, and
then analyzing the results to look for interesting content and
new questions to ask.

From this process we make a few generalizations about
puzzle design. First, puzzles with many solutions are less
interesting because they are less likely to test specific un-
derstanding. Thus, a common EPCG question seems to be
to ask for puzzles with a single solution, or with as few so-
lutions as possible. Second, puzzles with fewer constraints
seem to be more interesting than those with more con-
straints. Fewer constraints seem to reduce the contrivance
of the puzzles and ensure that the puzzles do not overwhelm
the reasoning capacity of the player solving the puzzles. In-
stead they directly test the understanding of the constraints
in the game. Thus, a common EPCG process will likely
involve iterating over small board with small numbers of
constraints to find the threshold where interesting problems
emerge. This is beneficial for EPCG because of its limited
ability to scale to very large problem instances. Finally, we

3https://windmill.thefifthmatt.com



observe that, in this domain, avoiding very short paths in-
herently produces puzzles that have interesting interactions,
even without directly optimizing for these interactions. In
many of the puzzles shown in this paper there is a simple so-
lution that can be achieved if a single constraint is removed.
This minimalism pushes the player directly up against the
constraints in each puzzle, forcing the player to analyze puz-
zle in new ways.

The work in this paper relied on writing custom code to
answer the EPCG questions that arose. Future work will
need to look at more accessible ways of using EPCG to ex-
plore game design that do not require as much code. This
will allow more users to engage with EPCG methods and
use them to explore their own design spaces.

References
Gent, I. P., and Walsh, T. 1994. The SAT phase transition.
In ECAI, 105–109.
Knuth, D. E. 1976. Mathematics and computer science:
Coping with finiteness. Science 194(4271):1235–1242.
Liapis, A.; Smith, G.; and Shaker, N. 2016. Mixed-initiative
content creation. In Shaker, N.; Togelius, J.; and Nelson,
M. J., eds., Procedural Content Generation in Games: A
Textbook and an Overview of Current Research. Springer.
195–214.
Shaker, N.; Smith, G.; and Yannakakis, G. N. 2016. Evaluat-
ing content generators. In Shaker, N.; Togelius, J.; and Nel-
son, M. J., eds., Procedural Content Generation in Games:
A Textbook and an Overview of Current Research. Springer.
215–224.
Sturtevant, N. R., and Ota, M. J. 2018. Algorithms for ex-
haustive and semi-exhaustive procedural content generation.
In Artificial Intelligence and Interactive Digital Entertain-
ment (AIIDE).

Appendix: Puzzle Solutions
For completeness, in this section we provide the solutions to
any puzzles in the paper that did not already appear.

Figure 5: Solutions to puzzles in Figure 3

Figure 6: Solutions to puzzles in Figure 4


