
Validation of Smart Contracts Using
Process Mining

Frank Duchmann and Agnes Koschmider

Institute AIFB
Karlsruhe Institute of Technology, Germany

frank.duchmann@student.kit.edu|agnes.koschmider@kit.edu

Abstract Smart contracts are self-executing contracts defining rules for
negotiating, verifying the fulfillment of rules and executing the agreement
using formal code. They run on top of a blockchain. Errors in smart con-
tracts are costly and are mostly found too late after execution, which
is too late for fixing. To improve the validation of executed smart con-
tracts, this paper suggests a process mining based approach. For this,
we present an approach for the extraction of meaningful event logs from
a blockchain. The event log can be imported in any process mining tool
and validation and verification techniques can be used allowing to diag-
nose (non)conformity in smart contracts by means of common quality
measures and with low latency after smart contract execution.

1 Introduction

Blockchain is a decentralized, peer to peer network, which makes use of cryptog-
raphy to securely host applications and store data, “where non-trusting members
can interact with each other without a trusted intermediary in a verifiable man-
ner” [1]. Smart contracts, which run on top of a blockchain, are self-executing
contracts defining rules for negotiating, verifying the fulfillment of rules and ex-
ecuting the agreement using formal code. Figure 1 shows the process of a smart
contract. First, a smart contract is written in a programming language (e.g.,

execute
contract

conditions
are met

write smart
contract

smart
contract

include
contract into
blockchain

contract
included

negotiate
contract

contract
executed

query
blockchain

query
results

error analysis by means of verification / validation

optional

Figure 1. Process of a smart contract: from written as code to its execution, while
smart contract analysis can be performed at different phases.

Solidity). Subsequently, the smart contract is deployed in the blockchain and
becomes part of the blockchain. When all conditions are met, the smart contract
executes itself. Verification by means of formal methods or validation by means

S. Kolb, C. Sturm (Eds.): 11th ZEUS Workshop, ZEUS 2019, Bayreuth, Germany, 14-15
February 2019, published at http://ceur-ws.org/Vol-2339

http://ceur-ws.org/Vol-2339

of simulation might take place in difference phases (i.e., at compile time and run-
time). To analyze smart contracts after its execution, the optional activity “query
blockchain” (see Figure 1) can be appended to the process referring to query-
ing the blockchain. We motivate the need for smart contract validation by the
following example. Figure 2 shows the vehicle manufacture example of a smart
contract1 within the smart contract process of Figure 1. This smart contract con-

Figure 2. Example conditions for a smart contract.

sists of Participants with the attributes <Person, Regulator, Manufacturer>,
Assets with the attributes <Order, Vehicle> and Transactions with the at-
tributes <PlaceOrder, UpdateOrderStatus, SetupDemo>. Assume that someone
aims to analyze the smart contract and query the blockchain with placeOrder,
updateOrderStatus and setupDemo (see activity “query blockchain” in Figure
2). Further, assume that the value of Vehicle is changed from SCRAPPED to
ACTIVE or Order is changed from VEHICLEORDER ASSIGNED to DELIVERED al-
though no prior assignment of a vehicle owner took place. The queries would
only return the current value of attributes and could not detect any errors. Al-
though such semantic errors can pass compilation and execution phases, they
have to be prevented since they lead to incorrect or unexpected behavior.

2 Related Works

Related works on smart contract analysis can be distinguished by the time point
of analysis. Approaches related to compile time aim to identify syntax or type-
checking errors, see for reference [2]. Runtime-based analysis try to identify se-

1 https://www.npmjs.com/package/vehicle-manufacture-network

14 Frank Duchmann and Agnes Koschmider

mantic errors [3,4,5]. Compared to existing approaches on semantic error verifi-
cation of smart contracts [3,4,5], this paper suggests a process mining approach
and is superior to existing work as follows. Our approach does not require to
specify additional smart contract properties as required in [3,5]. The logical flow
of smart contracts is analyzed in terms of well-known Petri-net based validation
and verification techniques. Also, the efficient implementation of our approaches
allows to generate the process model with only low latency after the smart con-
tract execution.

3 Process Mining based Approach to Smart Contract
Validation

This next section suggests our process mining-based approach. Process mining
takes event logs, records of the sequence of steps, and discovers a de-facto model
of the processes. Mandatory attributes of an event log are a caseID, activity and
time-stamp. Although, transactions of a blockchain are logged, the logs are of no
avail for process mining due to their transactional data structure that cannot be
directly mapped to an event log. We implemented the extraction of event logs
from a blockchain for Hyperledger Fabric and Composer. We omitted to continue
working with Ethereum due to several reasons. Currently, Ethereum does not tar-
get business smart contracts and thus the interest is low to find semantic errors.
Also, too many empty blocks are mined from Ethereum, which unnecessarily ex-
pand and complicate the event log. To extract event log activities our approach
relies on the queries queryChain and getProcessLog. The query queryChain

requests from a client to register on the blockchain and returns ledger blocks
as JSON objects. Note, that a direct extraction of events from the smart con-
tract is not possible since a smart contract requires a prior execution before
events can be extracted. The extracted events, thus, refer to “block writes” in
the blockchain. Block writes are the part of a block that contains a list of unique
IDs and the associated key value pairs that are written by a transaction2. The
getProcessLog query returns block writes through iteration and transcribing
each block as a trace of an event log. This means that the block writes con-
tain the complete new record, not just the value change of attributes. Assume
the attribute color of the object car1={type:pickup, color:red} is changed from
red to blue, then the new block write is car1={type:pickup, color:blue}. To
identify value changes, we compare the block writes. For this purpose, the last
state before the change (=identical ID) is stored and compared with the cur-
rent state. To ease the comparison, the possibly nested objects are transformed
into a flat data structure. If a value is changed or new attributes are added,
an event is transcribed. The event name consists of three attributes ranging
from 1=abstract to 3=concrete, which might be exemplary eventLevel1=“asset
updated”, eventLevel2=“color changed” and eventLevel3=“color changed from
red to blue”. Besides the eventLevel and the eventName attributes, an event-

2 https://hyperledger-fabric.readthedocs.io/en/release-1.3/readwrite.html

Validation of Smart Contracts Using Process Mining 15

Definition is defined, which aggregates simple events to complex events. As-
sume an eventLevel=“eventLevel3”, eventName=“This is now a red pickup” and
eventDefinition=[color=.∗ >red] && [make=.∗> pickup]. The evaluation of the
regular expression to true, is considered a complex event. The process model ex-
tracted from an exemplary smart contract is shown in Figure 3. The source code
of our project can be downloaded from https://github.com/FrankDuchmann/

hf-event-extraction.

Figure 3. Process model generated from a smart contract. The process model can be
validated through simulation giving hints to semantic errors in the smart contract.

4 Conclusion

This paper presented an approach for event log extraction from Hyperledger
Fabric and Composer. The event logs can be processed by any process mining
tool. We consider an event as the result of a transaction, which goes beyond the
simplified solution of [6]. In the future we plan to target event log extraction
from Ethereum.

References

1. Dannen, C.: Introducing Ethereum and Solidity: Foundations of Cryptocurrency
and Blockchain Programming for Beginners, Berkely, CA, USA (2017)

2. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying ethereum smart
contract bytecode in isabelle/hol. In: Proceedings of the 7th ACM SIGPLAN. CPP
2018, New York, NY, USA, ACM (2018) 66–77

3. Azzopardi, S., Ellul, J., Pace, G.J.: Monitoring smart contracts: Contractlarva and
open challenges beyond. In Colombo, C., Leucker, M., eds.: Runtime Verification,
Springer (2018) 113–137

4. Azzopardi, S., Pace, G.J., Schapachnik, F.: On observing contracts: Deontic con-
tracts meet smart contracts. In: JURIX. Volume 313 of Frontiers in Artificial Intel-
ligence and Applications., IOS Press (2018) 21–30

5. Ellul, J., Pace, G.J.: Runtime verification of ethereum smart contracts. In: EDCC,
IEEE Computer Society (2018) 158–163

6. Di Ciccio, C., Cecconi, A., Mendling, J., Felix, D., Haas, D., Lilek, D., Riel, F.,
Rumpl, A., Uhlig, P.: Blockchain-based traceability of inter-organisational business
processes. In: Business Modeling and Software Design, Springer (2018) 56–68

16 Frank Duchmann and Agnes Koschmider

