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ABSTRACT

While object recognition in deep neural networks (DNN)
has shown remarkable success in natural images, endoscopic
images still cannot be fully analysed using DNNs, since
analysing endoscopic images must account for occlusion,
light reflection and image blur. UNet based deep convolu-
tional neural networks (DNNs) offer great potential to extract
high-level spatial features, thanks to its hierarchical nature
with multiple levels of abstraction, which is especially useful
for working with multimodal endoscopic images with white
light and fluoroscopy in the diagnosis of esophageal disease.
However, the currently reported inference time for DNNs is
above 200ms, which is unsuitable to integrate into robotic
control loops. This work addresses real-time object detec-
tion and semantic segmentation in endoscopic devices. We
show that endoscopic assistive diagnosis can approach satisfy
detection rates with a fast inference time.

Index Terms— Endoscopic images, Deep neural net-
works, Decoder-Encoder neural networks

1. INTRODUCTION

A common strategy in deep convolutional neural network for
semantic segmentation tasks requires the down-sampling of
an image between convolutional and ReLU layers, and then
up-sampling the output to match the input size [1]. Atrous
convolution is designed to obtain the spatial resolution af-
ter several convolution layers [2]. Although, when compared
to normal convolution layers, the atrous convolution inserts
holes into its filters, thus enlarging the receptive field to a
greater extent, this method often loses low level information,
and is therefore unsuitable for a medical environment. To deal
with multi-scale images, a new Atrous Spatial Pyramid Pool-
ing(ASPP) layer has been developed to allow the network to
work on different image size and thus increase the flexibil-
ity of the input scale [3]. Capturing more information, some
of networks also directly used the output from convolution
layers as the low-level features, passing it into the decoder
to increase accuracy [4]. However, these structures currently
report an average inference time above 300ms [4]: it is essen-
tial to have a fast inference time in order to achieve real-time
image analysis.

Fig. 1: The architecture of Network

2. METHOD

As shown in Fig. 1, the architecture of network for this chal-
lenge is based on the UNet architecture. The convolution net-
work layers are used as an encoder to abstract low level spatial
information. A decoder is then implemented using transposed
convolution. Instead of using an ASPP layer, a general auto-
encoder class label is kept into a dense layer. This compressed
feature vector connects to a series of up-sampling layers using
the coast mask.

2.1. Algorithm

Regular classification DCNNs generate a coast mask contain-
ing probabilities for each class in a dense confidence regions
using the following steps:

1 Generate feature map using fully convolutional neural
network

2 Initialize a segmentation with feature detected

3 Transpose convolutional using confidence check to
keep one weak edge on the common boundary

4 Merge neighbouring regions (Ri and Rj) using an op-
timal objective function with the confidence of whole
image from feature map

5 Generate a new maximum of confidence map through
all adjunct regions

Here, the considered objective function is:

Cimage =

∑Nr

l=1 Cβ
Nγ

(1− Pj)
γ , (1)



Layer name Output size Parameters

Conv-1 H/2, W/2 8× 8, stride 2
Max pooling H/4, W/4 3× 3, stride 2

Conv-block-1 H/4, W/4
[
1× 1 64
3× 3 512

]
Dense-confi-block H/8, W/8

[
1× 1 64
3× 3 512

]
Table 1: Network architecture and layers specification.

where Cβ is the current region of confidence and Nγ is
the number of region of the corresponding specific adjunct
region.Pj is the probability of the jth class. γ is a free param-
eter which can be used to scale up confidence level to avoid
ignoring small regions.

After calculating the dense confidence feature map, the re-
sulting features are fed to a 1x1 convolution kernel with 256
filters. Finally, the result is bi-linearly up-sampled to the cor-
rect dimensions. The dense confidence pyramid uses atrous
convolutional layers in a cascade fashion, where the dilation
rate of each layer increases layer by layer; layers with small
dilation rates are located in the lower part, while layers with
large dilation rates are located in upper part.

Because of the great imbalance of different classes in this
test dataset, some classes have large number of pixels in al-
most every image and others doesnt exist in some images at
all. By setting γ > 0, we reduce the relative loss for well-
classified examples to avoid miss classifying objects. In other
words, the dense confidence layer works to alleviate errors
using a smaller scaling factor.

2.2. Data Argumentation

Imagnet pre-trained Resnet-50 is used for training with 320
images that EAD2019 challenge provides for the semantic
segmentation task [5, 6]. Among those images, 20% is kept
for evaluation and the rest is kept for training. The follow-
ing data argumentation methods are applied: the RGB value
(66.32, 76.13, 120.58) is used for normalization with batch
size 4. A random flip and rotation with (-50, 50) are used to
rescale the picture to 0.5-0.75 of its original size with the pad
size of (600 pixel, 512 pixel). After the data augmentation,
about 1300 images are obtained which are 4 times larger than
the original dataset.

2.3. Training processes

The following table 1 shows the hyper-parameters chosen for
feature map abstraction.

We uses a normal distribution to pick a tensor from the
interval of (0, std), where the equation of std is:

std =
√
(2/((1 + a2)fanin)) (2)

Where, a is the negative slope of the rectifier that used
after this layer which is 0 for Relu activation layer.

The typical batch size for SGD is generally set to 6, 12, 24
[7]. However, in this work, the batch size was set to 5, which
is the optimal number to strike the tradeoff of GPU memory
and speed of training.

During the training process, a poly learning rate policy is
implemented on the learning rates. To begin with, the learning
rate is relatively high and, after several iterations, the weights
have improved and the distance between current and the best
weights decreased. Learning rates also become smaller corre-
spondingly to find the best weights. The decay learning rate
policy is employed with the formula

η = η

(
1− ep

maxep

)power
, (3)

where ep and maxep are the current epoch and the maximum
epoch, which is set to 500. Here the power is set to 0.9 based
on previous published method [8]. Since the training dataset
includes some of very similar data, a weight decay method
[10] is followed the equation 3 and equation 4.

R (w) =
∑

k
∑

l w2
k,l, (4)

where wk,l is the weights stored in the network. The total loss
from the loss function will now have two parts:

L (w) =
1

N

N∑
i=1

Li (f (xi , w) , y) + λR (w) (5)

The first term represents the loss calculated by the loss
function chosen; the second part is the regulation part, mak-
ing the network more simple. If two sets of weights all have
a similar loss calculated by the loss functions, the bigger
weights will have a bigger regular term and therefore has a
bigger total loss.

3. EVALUATION

3.1. Sematic segmentation results

Results obtained from the trained models of challenge vali-
dation set are listed in Figure 2. The various resolution
im-ages are shown from the top to bottom row: (1003 x
1003pixel, 628 x 628 pixel, 576 x 576 pixel).

A detailed example of segmentation results for 5 classes
from the endoscopic dataset is shown in Appendix[9].

3.2. Training process

Figure 3 shows the loss rates at validation epoch. Although
the evaluation processes was not as good as the loss at train-
ing epoch, it was still acceptable. The MIoU curve dramati-
cally increase during the initiative 30 epochs, but then slowly
converged to the final value, achieving 65%.



Fig. 2: Results obtained from the validation set are
listed using various grey scales for five classes: Instru-
ment(255), Specularity(204), Artefacts(153), Bubbles(102),
Saturation(51). From left to right: (a) input (b) Unet (c)
DeeplabV3+ (d)Unet-D

(a) Loss rates

(b) MIoU

Fig. 3: The train process performance at the loss rates and
MIoU at each evaluation epoch

3.3. Comparison

Our evaluation was implemented using the validation set. We
use the Mean Intersection over Union to evaluate the capacity
of the model:

MIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(6)

The prediction (pii) was made by finding the maximum
output features map of the segmentation model, and is up-
sampled by 8 using bilinear interpolation. As shown in Fig.
4, our approach (UNet-D) had very similar performance in
training compared with state of the art semantic segmenta-
tion methods. In this challenge, the rules for evaluation of
segmentation was based on the DICE and Jaccard value. Our
results achieved the same results as other technologies, shown
in Table 2 and Table3.

Fig. 4: The comparison among DeeplabV3 , UNet, UNet-
D(our proposed approach)

Method Over-lap F2-Score Score s
UNet 0.36 0.48 0.42
Deeplab v3+ 0.54 0.56 0.55
UNet-D 0.39 0.44 0.41

Table 2: Sematic Segmentation score in the EAD2019 Chal-
lenge

Model Training time Prediction time Size
UNet 20h 213.5ms 28.7MB
Deeplab-V3+ 40h 320.8ms 182.7MB
UNet-D 30h 126.3ms 23.2MB

Table 3: The comparison of training and inference perfor-
mance

However, the measurement is an inadequate measurement
for semantic segmentation. Since the DICE calculate is based
on binary cases, this means that no cross regions appeared in
multiple classes. Furthermore, the scores is in favor with the
high DICE value.

The experiment environment used was Windows 10, 64-
bit with an Intel Core i7-7700HQ CPU and GeForce GTX
1080 Ti. The number of inferences to calculate the aver-
age result was 20. Although the UNet-D network does not
have the best performance in terms of its scores value in the
EAD2019 challenge [5], it had a smaller computational foot-
print, making it an excellent candidate for real-time semantic
segmentation tasks.

4. CONCLUSION

This work demonstrates that a skipped connection, keeping
low level spatial information, and removing the connection
with the ReLu layer, using a confidence relay, can reduce the
inference time. The UNet-D performance was not, however,
outstanding at this challenge; part of reason was that we use
small batch size to keep system memory low. Using the PAS-
CAL VOC2012 dataset, 85% MUOI was reported at the eval-
uation processes. With careful data argument methods, the



sematic segmentation based on deep convolution neural net-
work has great potential to be used in the real-time control
loop for the next generation of endoscopic devices.
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Fig. 5: Sample semantic segmentation results for five classes


