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Abstract. Accurate prediction of bird species from audio recordings
is beneficial to bird conservation. Thanks to the rapid advance in deep
learning, the accuracy of bird species identification from audio recordings
has greatly improved in recent years. This year, the BirdCLEF2019[4]
task invited participants to design a system that could recognize 659
bird species from 50,000 audio recordings. The challenges in this compe-
tition included memory management, the number of bird species for the
machine to recognize, and the mismatch in signal-to-noise ratio between
the training and the testing sets. To participate in this competition,
we adopted two recently popular convolutional neural network architec-
tures — the ResNet[1] and the inception model[13]. The inception model
achieved 0.16 classification mean average precision (c-mAP) and ranked
the second place among five teams that successfully submitted their pre-
dictions.
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1 Introduction

Public consciousness about environmental conservation and sustainable develop-
ment has awakened in recent years. Demands for automatic bird call classification
have also been rising owing to the key role of birds in the ecosystem. Compared
to video-based monitoring, sounds have the advantage of propagation to a long
distance without being occluded by objects in between the emitting source (a
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bird in this case) and the recording devices. Therefore, a robust system to iden-
tify bird vocalization may become useful for monitoring species diversity at a
fixed location as well as detecting bird migration along a route. Realizing the
importance of this task, a competition called BirdCLEF has been hosted every
year by the LifeCLEF lab[3] since 2014. The goal of the competition is to iden-
tify bird species in audio recordings. In the competition this year, participants
needed to detect bird calls in every 5 seconds of the soundscape recordings from
the Xeno-Canto database3 and identify the species if bird calls are present.

Previous attempts to use machine learning approaches for bird call identifica-
tion include decision trees, convolutional neural networks (CNN), and recurrent
neural networks (RNN). For instance, randomized decision trees were applied [6]
and the input consists of features derived from statistics of the spectrograms.
By ranking the feature importance returned from the decision trees, one can find
relevant segments to identify each sound class. Due to the computation load in
deriving the statistics from spectrograms, the decision-tree technique might not
be most suitable for the current BirdCLEF challenge; its ability to handle more
than 600 species remains a concern, too. The RNN-based model was adopted
in last year’s BirdCLEF challenge. In particular, the bidirectional long short-
term memory (LSTM) architecture was applied [8]. It made use of sequential
information in bird calls audio. However, because of the gradient vanishing and
explosion problems associated with the sigmoid gate function, the model is diffi-
cult to reach convergence. Besides, due to the nature of RNN, preprocessing and
augmentation are difficult to implement. Therefore, it seems that CNN-based
models become the most common approach in bird call recognition. In general,
the spectrogram of bird sound audio is regarded as the input and the model
would treat the bird-call identification task as an image classification problem.
This is intuitive, because features of bird calls unique to each species, such as
the pitch and the timbre, can be observed in the spectrograms by experienced
human eyes.

To participate in BirdCLEF 2019, we thus decided to apply two modern
CNN-based models, ResNet and Inception. The rest of this paper is organized as
follows. In Section 2, we briefly review the background of ResNet and Inception.
More details concerning model implementation and training are described in
Section 3. Experiments and results are described and analyzed in Section 4. In
retrospect, Section 5 points out several flaws of our attempts, and conclusions
and future directions are given in Section 6.

2 Background

In this section, we briefly review the spirits underpinning Inception and ResNet.

3 https://www.xeno-canto.org/



(a) the inception module (b) the residual block

Fig. 1: Basic concepts of two recently developed techniques in CNN

2.1 Going Deeper with Convolutions

Titled “Going Deeper with Convolutions”, the GoogleNet[12] presented a brand
new neural network structure which, rather than blindly stacking convolution
layers, emphasized on reducing the sparsity of the feature map. It replaced a gen-
eral convolution layer by what is called the inception module; that is, instead of
using a large-sized kernel in the convolution layer for feature extraction, smaller
kernels were constructed in parallel. The concept is depicted in Fig. 1a.

2.2 Deep residual learning for image recognition

Titled “Deep Residual Learning for Image Recognition”[1], the ResNet mainly
addressed the issue of model degradation. Because of the nonlinear activation
function, the back-propagation gradients might vanish, which degrades the per-
formance of deep CNNs. Hence, a highway pass between the upper and the lower
layers was introduced and the result is known as the residual block. It can be
expressed in the following general form,

yi = h(xi) + F (xi,Wi), (1)

where xi and yi are the input and the output of the ith block, and F denotes
a flexible residual function which is parameterized by the weight array Wi. A
common practice is to set h(xi) as the identity mapping and use the rectified
linear unit (ReLU) between the weight function inside F , and Fig. 1b illustrates
the main idea of ResNet.

3 Methods

This section describes details concerning the data processing and how the models
were trained and tested.



3.1 Preprocessing

Spectrogram extraction Our strategy for the task was to treat bird sound
classification as image classification; hence we need to visualize bird sounds.
A commonly used technique is the MEL-scale[11] log-amplitude spectrogram,
a kind of time-frequency representation that takes human auditory sensitivity
with respect to frequency into consideration. Since the occurrence of bird calls
could be sparse, we chopped the signal into 1-second chunks instead of extracting
a spectrogram for the entire 5-second recording. A band-pass filter with cut-off
frequencies of 500Hz and 15kHz was applied, since most bird species vocalize
within this frequency range.

.
Table 1: Parameters of spectrograms

Parameter Value
Sampling rate 44100 Hz
Window length 1024
Hop length 172
Number of Mel filters banks 128
Minimum frequency 500 Hz
Maximum frequency 15000 Hz

Parameters for computing the spectrograms are shown in Table 1. Note that
the hop length was determined so that each clip of one second contains exactly
255 frames. With this specification, each a Mel-scale log amplitude spectrogram
has a size of 128 × 256. To decide whether each second contains bird calls, we
applied a simple signal-to-noise ratio (SNR) threshold based on the methods
described by BirdCLEF participants in previous years[5,10]. Fig. 2 shows a few
examples of spectrograms with different SNRs. By inspection, a spectorgram
with a higher SNR indeed contains clearer traces that indicate the presence
of a bird call. In contrast, a spectrogram with a low SNR may only contain
background noise. Based on the SNR, we could set a threshold to include only
the spectrograms with a sufficiently high SNR as samples for training the neural
networks.

(a) 0.127 (b) 0.021 (c) 0.001

Fig. 2: Extracted spectrograms with different SNR



Table 2: The means for data augmentation applied in this study
Means Description
Gaussian white noise Additive noise with zero mean and a variance of 0.05
Adjusting brightness Randomly multiply the whole spectrogram with a value

between 1± 0.15

Random multiply Randomly multiply each pixel with a value between 1±
0.25

Image blur Replace each pixel with the mean of its 3×3 kernel neigh-
bors.

Vertical and horizontal roll Random shift by a value between ±0.5 of the height and
±0.15 of the width, respectively.

Random crop Here we only cropped the height of spectrogram. The
width remained the same.

Rotation The spectrogram was randomly rotated by an angle bew-
teen ±10 degrees.

Dropout Apply a random uniform matrix as a weight of spectro-
gram and set the weight to zero if that element is less
than 0.25; otherwise set it to one.

Blackout Set the value in randomly chosen consecutive 25 columns
to zero.

Data Augmentation We found class imbalance due to two reasons; first, the
SNR in some classes (i.e., bird species) is low. Secondly, some classes simply have
few recordings in the database. Hence, we randomly applied several augmenta-
tion methods (Table 2) to the spectrograms of those classes with insufficient
training samples. By inspection, the spectrograms of soundscape recordings in
the validation set all seem to contain noise. Therefore, in two of our submis-
sions, we added Gaussian noise to all of spectrograms, and fed both the orginal
spectrograms and those with Gaussian noise to the neural-network models.

Normalization In two of our submissions, normalization was applied. The
mean and the variance for transformation was calculated from the entire training
dataset.

Output format By observing the training data, we find out that bird vocaliza-
tion could be quite sporadic. Also, in the validation data, audibly different bird
calls rarely occur at the same time. Hence, we determined to decode the output
of the neural network into a one-hot vector.



3.2 Network architecture and configuration

ResNet In one attempt, we adopted the ResNet-18[1] classifier for bird-call
identification. The optimizer was stochastic gradient descent (SGD) with mo-
mentum and the batch size was set to 64. Weight initialization was applied,
which sampled from normal distribution N (0, 0.02) for convolution layers and
N (1, 0.02) for batch normalization2d layers. the number of channels in ResNet
has been reduced to 1 (because spectrograms do not have RGB colors); as the
number of input features decreased, the model complexity can also be lowered
so as to increase the training efficiency within a limited amount of time.

Inception model On the basis of Inception v3[13], we substituted two con-
nected convolution layers with kernel size (1, 7) and (7, 1) for the convolution
layer with kernel size (7, 7). Meanwhile, an additional activation function has
been added between the two small convolution layers. The optimizer was changed
to Adam and the batch size was set to 64. The same weight initialization that
was applied to ResNet has also been applied here. The number of channels was
decreased before the data flows into Inception module 5c. Other details about
modification of the Inception model can be found in our github contribution.4.

4 Results

Table 3: Evaluation of Inception and ResNet via validation data
model Inception ResNet18 ResNet34
cmAP 0.23 0.13 0.11
rmAP 0.39 0.05 0.01

Table 3 shows the best performance that we obtained from the two mod-
els on validation data. For some reasons, inception obviously was better than
ResNet. For more details about hyperparameter and corresponding validation
result, please see the appendix. The official main score, cmAP, was defined by
the competition organizers as follows,

cmAP =

∑C
c=1 AveP(c)

C
, (2)

and

AveP(c) =

∑n
k=1 P (k)× rel(k)

nrel(c)
. (3)

4 https://github.com/jimmy133719/BirdCLEF2019



In Eq. (3), C denotes the number of species in the ground truth, and AveP(c)
is the average precision for a given species c, which is defined in Eq. (4) — k
denotes the rank of an item in the list of the predicted segments containing c, n
denotes the total number of predicted segments containing c, P (k) denotes the
precision at cut-off k in the list, rel(k) is an indicator function that equals 1 if
the segment at rank k is labeled as containing c in the ground truth (and zero
otherwise), and nrel is the total number of relevant segments for c.

Table 4: Evaluation of each run
run 1 2 3 4

cmAP 0.140 0.149 0.160 0.154
rmAP 0.110 0.117 0.164 0.184

Due to the comparatively better performance of the inception model, we
adopted it in all of our submissions. Table 4 shows the official evaluation of each
run. In the first two runs, Gaussian noise was not added to the whole spectro-
grams. The only difference between them was in the threshold of SNR with 0.005
and 0.001, respectively. In the third and forth runs, we added Gaussian noise
to all spectrograms and normalized all of the spectrograms before training. The
difference between them was the epochs we chose. The official results surprised
us since the first two runs actually performed better when evaluated in the val-
idation set. Otherwise, compared to other teams, our rmAP peculiarly was not
much higher than cmAP. This is not surprising, probably because we assigned
five classes to most of the five-second segments that contains bird sound, which
increases the denominator in the equation of rmAP.

5 Discussion

The audio in the testing set contains various kinds of environmental noise (such
as the sounds of insects), but we ran out of time in designing a generalized
method to deal with it. The noise results in difficulties to extract the correct
feature from spectrograms. The SNR threshold we applied to determine the bird
calls’ presence also has some concerns, since we might have included a spectro-
gram with intense noise instead of targets, and those spectrograms contain only
noise would be treated as training data. In data augmentation, though most of
the means in Table 2 could be useful in image processing, but in retrospect they
are not always suitable to spectrograms. In particular, the two axes of spectro-
gram have different meanings (time vs. frequency), so a similiar shape occuring
at different locations may correspond to features that are unique to different bird
species. Hence, augmentation such as rotation might actually have been harmful
during the training stage.

We deduce a simple reason why Inception-v3[13] outperformed ResNet[1]
could be because of the number of parameters. The more parameters a model



has, the more accurately the model can representation the mapping between the
input and the output. In our experiment, the parameter size of ResNet-18 is
9.12 MB, the parameter size of ResNet-34 is 10.41 MB, and the parameter size
of Inception-v3 is 92.3 MB.

6 Conclusion and Future work

Our work is based on the baseline of BirdCLEF last year. The main difference
is that we change the model to Inception-v3. Future work will focus on im-
proving the preprocessing. We need to enhance clear bird sound features on the
spectrograms of soundscape recordings so that it can be similar to the train-
ing set. In the current approach, we added Gaussian white noise as a mean of
data augmentation. We would like to change it to the noise from the record-
ing environments. Moreover, since the current preprocessing mainly focuses on
the magnitude spectrogram, it might beneficial to learn additionally informa-
tion from the phase spectrogram, especially when multiple recording channels
are available.

On the part of model, due to the shift-invariance and the parameter-sharing
property, CNN may be in trouble distinguishing spectrograms that contain fea-
tures of similar shapes but occuring in different frequencies. A possible way to
mend this would be tiled convolution. Although it is still a CNN model, a tiled
convolution model [9] has locally confined receptive field; that is, the parameter
sharing of tiled convolution is not global. Employing attention mechanisms can
also be recommended, since not all the neurons would end up equally important
as the signal comes out from a specific range of frequency [7]. Yet another neural
architecture, the SENet[2], is worth trying because the resolution of spectro-
grams can be increased in order to preserve more details.
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A Hyperparameter sheet and the corresponding
validation results

Table 5: Hyperparameter sheet
model learning

rate
L2

lambda
optimizer cmAP rmAP

Resnet-18[1] 0.1 0 SGD 0.13 0.05
Resnet-18[1] 0.01 0 SGD 0.01 0.01
Resnet-18[1] 0.001 0 SGD 0 0
Resnet-34[1] 0.01 0 SGD 0 0
Resnet-34[1] 0.001 0 SGD 0.11 0.01
Resnet-34[1] 0.01 0.001 SGD 0.05 0.04
Resnet-34[1] 0.001 0.001 SGD 0.11 0.01

Inception-v3[13] 0.001 0 Adam 0.23 0.39

The momentum of optimizer SGD is set to 0.9. The β1 and β2 for optimizer
Adam are set to 0.9 and 0.999, respectively.
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