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ABSTRACT 
Arguments, motions, and decisions in courts of the United States 
of America are recorded in PDF documents filed in each court’s 
docket. Utilization of these documents as data requires accurate 
and efficient information extraction methods. We take a 
supervised machine learning approach to a portion of this task, 
predicting metadata labels in court filings. On a dataset of about 
2500 annotated scanned PDF images with 21 labels, we found 
that traditional classifiers such as MaxEnt achieved an average 
F1-score of 0.44 (micro-averaged across labels), with the highest 
label (Body) at 0.88. However, a 1-dimensional sequences in the 
text, Mallet’s CRF implementation, achieved an average F1-score 
of 0.6 across all labels, with some labels as high as 0.91. These 
results demonstrate the value of using sequence models over 
traditional classifiers in labeling the types of information in court 
filings. 
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1. INTRODUCTION 
A court filing is a legal document submitted to a court that triggers 
an event in a legal proceeding. Court filings indicate what the case 
is about, why it should be in that court, and the grounds for the 
legal dispute. The legal effect of a filing depends critically on the 
event that it is intended to trigger (e.g., dismissal, answer to 
complaint, substitution of counsel), the role of the filer (plaintiff, 
defendant, court, intervener, etc.), the context of the filing (e.g., 
the previous filing, if any, that it is intended to respond to), 
whether it has been properly signed, and other document 
characteristics. Any process for automated analysis of court 
filings must determine the contents of these fields, which we refer 
to as “metadata”, to distinguish it from the content of the body of 
a document. 

A simple example of importance of automated metadata 
extraction is automated document quality control; that is, 
detection of discrepancies between the document metadata (such 
as the case number) and the metadata specified by the filer (e.g., 
the number of the case that the document was filed into). The shift 
to electronic filing systems, such as the US Federal Judiciary’s 
CM/ECF system, by increasing numbers of courts means that 
filings are no longer inspected for errors by an intake clerk. 
Instead, this function is often performed by quality-control staff. 

Automating this process would free limited court resources for 
more productive purposes (Branting 2017).   

However, automated extraction of document metadata requires 
identifying the type and location of the fields in the case caption 
and footer. This process could be assisted by machine 
transcription, but there are several challenges. For one, many 
documents are first printed on paper and then scanned into PDF 
form. Thus, a common format for these documents is an image, 
rather than plain text or XML. Moreover, recovering the layout of 
native PDF documents can itself be challenging, as described 
below. 

There are tools available for image analysis, as well as for 
converting documents to plain text or XML, such as Apache Tika. 
But further challenges arise in how the information is laid out on 
the page. There is some structure in the layout of a court filing; 
the court is at the top of the page, with the parties below it, and 
the document number to the right of the parties. However, the 
actual physical position of this information can vary based on the 
amount of text and the conventions of the court. Many courts have 
small variations in how the information is presented, such as 
right-justifying vs. centering the court, or putting the document 
number at the top of the page.  

Since there is no fixed location of information on each page, and 
rarely any indicative metadata, it becomes very difficult to 
automatically determine which piece of text is the court, the 
parties, and the document number. Additionally, things like 
stamps and signatures are often placed arbitrarily on the page, 
introducing noise in any image-to-text conversion.  

When a document image is converted into XML via a conversion 
tool like Apache Tika, there are a number of features that can be 
taken from the new structure. In this paper, we attempt to assign 
a label to each word using both lexical and positional features. 
Positional features include the x and y position of each word, the 
quadrant of the page it is in, and the distance from other words 
around it. Lexical features include the word itself, the word case, 
the word type, and indicators of the word matching typical words 
in each type.  

In our analysis, we find that positional features alone are not 
sufficient to classify most words, but reasonable performance can 
be obtained by including both lexical and positional features.  

2. RELATED WORK 
Several research communities have been active in document 
analysis, including historians, librarians, scientists, legal 
technologists, and those in government. Each community comes 
with a different set of data and goals, but all follow a similar 
processing framework. 
There are several ways approach the information extraction from 
documents. One of the first tasks is separating the elements of the 
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page, a process called segmentation.  (Mao, Rosenfeld, & 
Kanungo, 2001) distinguish between physical and logical layout 
segmentation. Physical segmentation includes identifying the 
lines, spaces, blocks, and other elements on the page. Logical 
segmentation seeks categorize these elements by their function 
(e.g. headers, footers, content trees). Methods of logical 
segmentation include rule-based approaches, comparison against 
knowledge-bases, and unsupervised learning.  
More recently, researchers have approached the problem by 
converting the elements on the page into vectors and using 
supervised machine-learning models to classify the logical 
function of each element on the page. (Souafi-Bensafi, Parizeau, 
Lebourgeois, & Emptoz, 2001), for example, identified a 
hierarchy of geometric text blocks in various publications, and, 
along with typographical information, constructed a vector 
representation for each word. They then used a Bayesian network 
classifier to label the logical function of each word.  
Standard classifiers, such as SVMs, Bayes nets, and random 
forests, can be considered 0-dimensional models, in that they only 
consider the features of each token, but not the sequence of tokens 
around it, Sequence learning algorithms, such as Conditional 
Random Fields (CRF), can be considered 1-dimensional 
classifiers, in that they consider the features of the elements 
before and after each token. (Trompper & Winkels) used a CRF 
model to classify header types in Dutch court documents from 
XML and found that CRFs outperformed a deterministic tagger.  
Two-dimensional sequence learners can consider sequences of 
tokens in multiple directions and can thus exploit horizontal and 
vertical relationships between elements in documents. In ‘2D 
Conditional Random Fields for Web Information Extraction’, 
(Zhu, Nle, Wen, Zhang, & Ma) successfully used a 2D CRF to 
classify sections of web pages.  
In this paper, we focus on assigning logical labels to words in 
each court filing. We converted each scanned PDF into 
hierarchical OCR (XML) using Apache Tika and developed 
positional and linguistic features for each word token. We then 
compared 0-,1-, and 2-dimensional models to identify the relevant 
sections of the page.  

3. APPROACH 
In this work, a labeled dataset was constructed from scanned 
PDFs of court filings. This was done using an annotation tool 
called the MITRE Annotation Tool (MAT), developed by The 
MITRE Corporation. This tool contains resources for creating, 
maintaining and scoring annotated corpora of page images. The 
tool contains a set of annotation guidelines which we settled on 
after a number of rounds of pilot annotation. These guidelines 
focus on the first and last pages of court filings and legal letters. 
The annotator is asked to locate the major, non-nested sections of 
these pages (signatures, caption, court, body, etc.), as well as non-
text stamps (such as received stamps), which are annotated for 
future reference. The annotation tool is Web-based and provides 
a graphical tool for identifying blocks and labeling them. In 
comparison mode, the tool can compare two annotators' efforts to 
each other. 
The tool exploits a position-aware OCR output format known as 
hOCR, which presents each word along with its pixel-level 
location block on the page from which it was extracted. This 
position awareness allows us to score annotator blocks against 
each other, by determining which words are within each annotator 
block and how many of the words are in common between blocks. 

This allows the scorer to ignore slight variations in the actual x/y 
locations of the blocks and focus on how much content is in 
common.  
Once the documents were annotated and converted into XML 
with labels, a toolchain was constructed to build models for 
automated inference of the textual (non-stamp) blocks given the 
hOCR output. 
The fundamental problem with standard text-based approaches is 
that the text on these pages is not running text, but rather in 
blocks, so serializing the blocks in a standard line-oriented way 
may obscure the structure of the document and lead to problems 
applying standard structural techniques. Our hypothesis has been 
that using a graphical modeling inference strategy, allowing us to 
create much more structurally sophisticated contextual 
dependencies among elements, including 2-dimensional 
geometry, would enhance our ability to learn the location of these 
blocks. 
Our strategy is an enhancement of the standard classification 
approach. Our goal has been to be able to compare multiple 
strategies to each other, including these strategies which build on 
these sophisticated contextual dependencies. Therefore, we've 
built a general-purpose experimentation harness for this family of 
classifiers. 
First, from the hOCR output for a given page, the tool constructs 
a set of features for each token in the document. These features 
can be atomic features, string-valued features, or float-valued 
features. These features include: 

• case features, related to capitalization pattern of the 
token 

• digit and garbage features, related to the distribution 
of digits and non-alphabetic characters in the token 

• word and ngram features, related to the character 
sequence of the token 

• tag features, derived from applying the Stanford 
toolkit named entity tagger to the linearized text (these 
features are not likely to do much work for us, given 
the known problems with simply serializing this text 
line-by-line) 

• similarity features which identify the best reasonably 
close match between the token and some of the 
metadata for the case for the document (e.g., the 
names of the parties or attorneys) 

• 2-dimensional location features which indicate the 
position of the token on the page (what quadrant its in, 
and what percentage from the origin it is) 

• margin features indicating words on the margin and 
whether they're indented 

 
They can also be features on links between tokens, e.g., whether 
two tokens are farther apart than the average or median distance 
between tokens in the horizontal direction, or whether two tokens 
are more than one line apart in the vertical direction or indicating 
whether two tokens are on the same line. 
This array of features, then, provides two levels of position 
sensitivity: first, on the token level, with the 2-dimensional 
location features, and second, with links between the tokens, for 
engines which recognize such features. 
We explored three classes of algorithms: 
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• 0-dimensional token classifiers, represented by a 
maximum-entropy algorithm, implemented separately 
by the MALLET1 engine, and by the Mandolin2 
engine.  

• 1-dimensional linear CRF, also implemented with the 
MALLET and Mandolin engine. 

• 2-dimensional CRF, where the dimension here refers 
not to geometric dimensions but abstract properties of 
the engine. Our goal, however, has been to use these 
properties to encode context dependencies in two 
dimensions. This was implemented only with 
Mandolin; a MALLET-equivalent (GRMM) 
implementation was attempted but unsuccessful.  
 

Only the Mandolin engine explicitly represents links between 
tokens. We model our 2 geometric dimensions by computing 
unobstructed overlap between tokens in the vertical direction, as 
well as using line adjacency in the horizontal direction. Only the 
2-dimensional model captures feature information in the vertical 
direction in our approach. 
 

 

 
Figure 1: Examples of the varied structure of court filings 

 

4. DATA 
Our corpus consists of the first and last pages drawn from 
approximately 2500 court filings, PDFs typified by Figure 1, 

                                                             
1 http://mallet.cs.umass.edu/ 

amounting to about 3500 annotated pages (some documents are 
only one page long). 

 
Figure 2: Examples of a case caption and footer with labeled fields. 

Each court document contains the name of the court, the parties 
in the case, the case number, and the document title. Each word 
in the document is extracted, and positional and lexical features 
are determined from the words and their context. Several machine 
learning algorithms were then used to construct models to predict 
the labels based on the training data.  

 
Figure 3: Number of occurrences of each type of word 

The data was separated into batches, with each batch containing 
about 150 documents. Overall, about 22 batches were used for 
training, and 2 batches were used for testing. Within each batch, 
each document was divided into words, with features assigned to 
each word based on its positional and lexical elements. The 
number of words with each label vary, with the body containing 
the most words on average, and the caption a distant second, as 
illustrated in Figure 3.  

2 http://project-mandolin.github.io/mandolin/index.html 
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Figure 4: Sample locations of words, colored by label 

Labels tend to occupy certain regions consistently, though their 
actual position can vary greatly. As an illustration of this, we 
plotted the X and Y coordinates of a sample of words, colored by 
label, in Figure 4.  

5. FEATURE EXTRACTION 
Around 25 features of the data were identified and extracted for 
each token, characterizing its positional, linguistic, and contextual 
information. 
Using Weka’s ‘Information Gain’ evaluator, the features were 
ranked according to the predictive value they provide. The most 
highly ranked features, pct_y_from_origin and 
pct_y_from_origin, represent the position of the token on the 
page. After that, entryType, stanford_lemma, and 
uncacheableAtomicFeatures deal with the linguistic properties 
of the data. Finally, otherWText and right_indent deal with the 
relative positional information of the token to other tokens in the 
text.  
Each type of feature, positional, lexical, and contextual, help the 
model determine the role of the text on the page. While that 
doesn’t necessarily mean that is the information humans use to 
make the determination, it is a relatively intuitive result: the 
position, type of word, and relation to the words around it, all 
indicate the function of each word in the text. 

Info 
Gain 

Type Feature Description 

0.44 Pos pct_y_from_origin Vertical 
Distance from 

Origin 
0.41 Pos pct_x_from_origin Horizontal 

Distance from 
Origin 

0.41 Lex entryType Named Entity 
Type 

0.41 Lex otherWText Word 
following 

token 

0.40 Lex stanford_lemma Lemmatized 
token 

0.37 Lex uncacheableAtomicFeatures n-grams of 
token text 

0.22 Pos right_indent Indentation 
from Right 

Margin 
0.16 Pos v_half Top or Bottom 

of Document 
0.13 Lex wText Token Text 

0.12 Lex stanford_pos Part-of-Speech 
Figure 6: Information Gain metrics for top 10 features 

6. EXPERIMENTS 
Our hypothesis is that a combination of positional, lexical, and 
contextual information can be used to determine the function of 
each word on the page. To test this, a dataset of case metadata was 
developed, with features extracted about each token, including 
positional and lexical information. Each token was then assigned 
to the metadata label of the field where it occurred, and a machine 
learning algorithm was trained to predict the label based on the 
features of the token. This was treated as a multi-label training 
task in which the F1 score was calculated separately for all tokens 
occurring in each documents field, i.e., for each label (document 
title, case caption, etc.). This may enable future researchers, who 
are interested in only a subset of the metadata, to get a baseline 
for the difficulty of extraction.  
An ablation study was performed in which each model was 
evaluated with each type of feature, lexical or positional, present 
or absent in order to determine its relative contribution to 
classification accuracy (s. Finally, the predictive accuracies of 
several alternative predictive models were compared, including 
standard classifiers with 1D and 2D sequence models. The results 
of each of these experiments in terms of mean F1-score across all 
labels is shown in Figures 7-9.    

7. RESULTS 
As Figure 7 shows, some metadata labels are reliably predictable 
using a combination of positional and lexical features. The degree 
of accuracy on some labels, as high as 90%, could be useful in 
many extraction tasks. Further, results were significantly 
improved by adding both positional and lexical features, and by 
using models that consider sequences, such as CRFs.  

Label F1 Label F1 

body 0.91 doc_title 0.68 

court 0.9 case_type 0.67 

date_addr 0.84 typed_sig 0.64 
valediction 0.82 form_number 0.63 

salutation 0.79 venue 0.62 
caption 0.78 signer_info 0.59 

recip_info 0.72 date 0.55 
case_number 0.72 cc_info 0.46 

performative 0.71 notary_block 0.46 
case_title 0.71 letterhead 0.42 
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Figure 7: Top 20 metadata labels by max F1 score 
In particular, when the word value of a token (i.e., Token Text) 
was the sole feature, non-sequence models classified most tokens 
as ‘Body,’ with a small proportion tagged as ‘Court’. This appears 
to be due to the fact that ‘Court’ words are a very small and 
specific set, including ‘UNITED’, ‘STATES’, ‘DISTRICT’, and 
‘COURT’. Curiously, adding positional features to a standard 
classifier did little to improve the results. However, when other 
lexical information was included, the F1-measure increased 
greatly for most other labels. Including both lexical and positional 
features improves the results even more, as shown in Figure 8. 
This is consistent across each of the model types and shows that 
while the token’s position on the page is important, the lexical 
properties of that token also play a significant role in identifying 
its label.  
 

Lexical/Positional (F1) No Lex Lex 

No Pos 0.23 0.089 
Pos 0.45 0.52 

Figure 8: Average model F1 scores across all labels and models, 
with and without lexical and positional features 
 
In comparing the types of classifiers, the CRF’s outperformed 
standard classifiers in all cases. We used two different 
implementations of CRFs: Mallet CRF, and Mandolin CRF. We 
chose to compare Mallet to Mandolin because Mandolin could be 
used for standard classification, 1D and 2D analysis, while Mallet 
only included the standard classifier and 1D CRF. However, the 
Mallet CRF has been around for quite some time, and likely 
benefitted from significant tuning. Consistent with this surmise, 
Mallet outperforms Mandolin’s 1D and 2D CRFs, as shown in 
Figure 9.  
 

Models/Dimensions (F1) MaxEnt CRF 2D CRF 

Mallet 0.27 0.44 
 

Mandolin 0.28 0.37 0.39 

Figure 9: Average model F1 scores across all labels and features, 
organized by algorithm and dimensionality 
 
However, comparing Mandolin’s 1D to its 2D CRFs, we see that 
most labels had an improved F-measure with the 2D. That leads 
us to believe that with further tuning, the 2D CRF could do quite 
well, but the Mallet 1D CRF had the best results overall in these 
experiments.  

8. CONCLUSIONS 
In these experiments, we found that the metadata labels (i.e., 
fields) of case captions and footers in US Federal court filings can 
be predicted using a combination of positional and lexical 
information. Accuracy was higher for much higher for some 
fields, such as body, case type, and court, than others, such as the 
sender and signer info, are harder to identify.  The best 
performance was observed from the Mallet CRF, indicating that 
sequence-learning techniques perform better than 1D classifiers 
in the domain of court filings. While the utility of 2D sequence 

models has an intuitive appeal, we did not find that they increased 
accuracy over the 1D sequence model.  

9. FUTURE WORK 
There are several areas for improvement in this task. In general, 
some rigorous error analysis could be performed to identify major 
classes of errors. Further tuning of the models may also improve 
results, and additional training data may allow for other models 
such as Neural Nets. Additionally, a more mature 2D CRF 
implementation, such as GRMM might improve performance.  
Finally, while initial work aims to label each word in a document, 
using these labels to predict the label of the ‘block’ that the text 
is in, is the longer-term objective. This would facilitate 
information extraction from the entire block. 
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