
Advantages of Programmable Compile Time with

Metaprogramming: the Case of ASN.1 and Perl 6

Nataliya Osipova 1[0000-0002-9929-5974], Oleksandr Kyriukhin 2

1,2 Kherson State University, 27, 40 Rokiv Zhovtnya St., Kherson 73000, Ukraine

natalie@ksu.ks.ua

alexander.kiryuhin@gmail.com

Abstract. With the ever-growing complexity of software systems already built

and, more importantly, needing to be built in future, the need for research toward

better methodologies, approaches and architectures is hard to overestimate. Ideas

of novel software writing techniques are often implemented in tools in order to

test out the pros and cons of the new technique, which may become generally

accepted in the case of its successful application. This paper demonstrates a real

world application of a recently introduced approach to the development of soft-

ware libraries using advanced metaprogramming features that are present in some

programming languages, notably in a recently released language called Perl 6.

This research takes as a subject a well-developed problem, ASN.1 (The Abstract

Syntax Notation One) implementation, with two approaches to writing a solution

being common, and depicts resulting disadvantages of those approaches. Next, it

describes how the use of metaprogramming in Perl 6 allows mitigating such prob-

lems, along with obstacles encountered during the development process. A num-

ber of software libraries were designed and implemented utilizing this approach,

and it is used as a part of ASN.1 support for the Perl 6 language. A brief expla-

nation of the solution’s internal architecture and ideas about possible future im-

provements are provided.

Keywords: compile time computation, metaobject protocol, Perl 6.

1 Introduction

Various techniques can be used to reduce the complexity of implementing large-scale

software systems while maintaining correctness: some are based on type-driven verifi-

cation [1], some on model-driven verification [2] and some on other less popular tech-

niques. The reason behind this is that, almost regardless of the level of abstraction pro-

vided by a common general purpose programming language, often beyond complex yet

concise code pieces, a certain amount of so-called “boilerplate” code has to be written

manually or generated. Manual coding done by a human is prone to errors, is known to

be tedious and costly, has low ability to adapt to changes, so the idea of entrusting the

process of generating the necessary code to the computer, guided by a set of rules, is

not new and dates back to the first assemblers written.

ASN.1 is a part of a group of telecom standards, a standard that describes a language

used for describing data structures, and it is widely used in communications and net-

works [3]. Thus, a number of implementations have been created over the past decades,

already proven to be sound, and highly optimized. However, at the same time, selecting

this particular topic renders us an opportunity to look at mature implementations’ ar-

chitecture, and to contrast it with the approach this research examines.

When it comes to cases of working with data structures and generating code for those

structures, based on a formalized specification (which is easier to reason about com-

pared to actual software code), two widely used implementation techniques come to

mind. As the ASN.1 standard provides formal means to describe data structures and

rules for its encoding-decoding process, its implementations serve us as a particular

cases of the approaches:

 Writing a compiler that takes a specification as an input, parses it, forms an AST

(Abstract Syntax Tree) and, using it as a guide, prepares a textual representation of

the code in the target language that describes the specification in terms of both lan-

guage’s native type structures and specialized additional code (in the ASN.1 case it

is code related to encoding and decoding data according to various encoding for-

mats). As a next step, the generated textual code representation has to be compiled

and linked to other modules of the end-user application in order to be used. This

approach is typically, but not necessary, used for compiled languages including C.

It was successfully applied for years and a number of commercial ASN.1 compilers

were developed [4, 5].

 Writing a library that offers a set of predefined types, with which the end-user can

manually derive the necessary specialized types required by the schema using the

target language. Inheritance or instantiation of such types gives the user the ability

to use generalized additional code “out-of-the-box” by means of code reuse. This

technique can be seen as a subset of the former, with the key difference is that the

end-user has to manually translate abstract types given in the specification into na-

tive programming language types offered by the library (it can be seen as the parsing

and AST constructing phases of a compiler). Such an approach can be found in [6,

7].

However, both described approaches have particular disadvantages that arise from

the nature of either compilation into high level language’s textual representation (we

will refer to it as a “two-pass compilation approach”) or explicit AST-like structures

usage (we will refer to it as an “AST-driven approach”).

This paper explores an application of another technique, which is based on ability to

execute programming language code at compile time (which takes a different angle on

metaprogramming compared to Lisp-like macro support [8] and other derived AST

transformation systems), that can naturally address those known disadvantages, using

as an example a case of translation of an ASN.1 specification into native programming

language types. We will use the Perl 6 language, which is a modern, multi-paradigm

language with a rich set of features, built-in support for executing code parts at compile

time [9] and an object system built upon a metaobject protocol [10].

Perl 6 is a brand new language released in late 2015 that originated from the well-

known Perl programming language development process and gradually became an in-

dependent language with numerous unique features and fresh approaches to known

problems in language design. As well as other languages originally created for industry

purposes and not inside of the scientific community, it is yet to become widely recog-

nized.

However, while actual popularity of a language is known to be hard to measure,

steadily increasing attention to the language can be observed: new books were written

over last two years [11], open source, proprietary and scientific [12] projects are written

in Perl 6 along with an increasing of number of dedicated development tools [13, 14]

and a growing ecosystem [15].

The Perl 6 language proves to be worth working on for its features: a lot of them are

rather powerful, compared to currently popular languages’ features, and a number of

design solutions, including compile time code evaluation, which are unique to the lan-

guage, makes it very expressive when it comes to building abstractions.

2 Related Work

The idea of transforming programming code at compile time is not new: it dates back

to the first Lisp implementations with its macro system that allowed the programmer to

transform program elements themselves, in effect enabling extension of the language

without the need to change the language implementation. In the decades following this

invention, programming language implementations were predominantly compiler-

based, derived from the ALGOL family of programming language features, but starting

in the late 80s and early 90s script languages have gained popularity, notable examples

being Perl, Python, PHP and Ruby [16].

However, many of the currently popular programming languages support only the

most basic compile time transformations such as constant folding, which are usually

done by the compiler itself and are related to performance optimization. Therefore, the

programmer has very little control over the compilation process. Even though they

know the language well enough to do what is required at runtime, that knowledge can-

not be applied at compile time.

Other than modern Lisp implementations like Common Lisp, that include a macro

system, one can note a few languages that give the user the ability to do compile time

calculations to a greater extent than constant folding-level computations:

 Haskell has TemplateHaskell, a GHC compiler extension, that allows the user to

utilize compile time metaprogramming based on AST transformations [17].

 Perl 5, although unlike Perl 6, Perl 5 is an interpreted language, so BEGIN code

blocks that run during program parse stage will be re-calculated on every script start.

While it cannot be considered to be exactly compile time, it was an origin of sorts.

 C++ with its template system can be used for metaprogramming [18].

While the C++ template system is Turing-complete and can be used to implement a

similar approach as this paper shows, it has to be recognized that C++ templates use a

distinct “meta-language” to express its metaprogramming features, and this internal

language is only a subset of C++.

On the contrary, Perl 6 presents a powerful mix between static and dynamic behavior

to user, and allows execution of normal Perl 6 code at compilation time in a similar way

to normal code execution at program running time.

Perl 6 implements advanced Object-Oriented Programming techniques including a

Metaobject Protocol, which, among other possible applications, allows the programmer

to define and patch types (OOP classes, but also roles [19], enumeration objects etc.)

using so called “meta classes”. This way one can, using normal Perl 6 constructions,

generate classes with attributes (data) and methods (operations), routines and more of

the language’s first-class citizen values depending on currently accessible context. Gen-

erated symbols (a type or a callable object with a name) can be stored in the generated

bytecode after compilation and used afterwards.

A number of popular dynamic programming languages do support metaprogram-

ming to varying degrees, often providing ways to create and change types (even if they

do not offer a complete metaobject protocol) as well as generating code at runtime.

Runtime code generation can be used successfully for performance optimizations and

the results can be cached [20], however it is rarely used to generate types for persistent

use, mainly due to inconveniences during saving and exporting those types as they

would be with normal compilation units.

The key approach to exploiting Perl 6 features that allow overcoming it was pre-

sented by Worthington [21], who stressed its usefulness for library and framework writ-

ers. This paper presents an example of real-world application of the idea along with an

analysis of the benefits it brings compared to well-known approaches.

3 Overview of Common Approaches to Code Generation

As this paper overviews a number of design solutions made in mature ASN.1 imple-

mentations, it has to be understood that the aim of this research is to evaluate a different

approach to designing specification-driven implementations and the developed soft-

ware does not aim to compete with the mentioned implementations in terms of effi-

ciency, ASN.1 standard coverage completeness or security (although, without doubt,

those characteristics are seen as important ones and can serve as directions for further

research work in this area).

Instead, it uses noted implementations as particular cases to compare with to analyze

the benefits gained from a module written to take advantage of compile time evaluation

with the full language available, as such module architecture can be generalized for a

wider scope of cases.

Among existing free and open source ASN.1 compilers, two widely used ones were

chosen as examples: asn1c[6], a compiler written mainly in C that targets C++-compat-

ible C code, and pyasn1, set of libraries written in the Python programming language.

3.1 A Two-Pass Compilation Approach

A two-pass compilation approach schema is depicted in Fig.1. The first phase consists

of using an ASN.1 compiler to produce source code in the target language. The second

phase consists of using the target language compiler to process both generated source

code and application code to later be linked and executed.

Fig. 1. Typical schema of the compilation-based approach

This approach has disadvantages both maintenance-wise and architecture-wise:

 A certain amount of additional textual sources are generated just as an intermediate

form, for its later compilation into a compiled module to link an application with. In

case of a gradual protocol development process, where specification and end-user

code are being developed simultaneously, each change requires full generation of

new sources to be compiled.

 Generated source code has to be immutable in a sense that its manual extension be-

comes, while possible, a maintenance burden. Changes introduced manually have to

be re-applied every time the specification is changed and its re-compilation occurs

as changes made will not be preserved in generated sources. Thus, in case that the

end-user wants to process an ASN.1 type differently, an extension system has to be

developed. With it in place, code generation can still be difficult from the point of

view of typical programmer without experience in compiler writing, making exten-

sions code more error prone.

The former issue is caused by a number of factors: lack of compiler APIs that allow

for something more robust than text, but higher-level than the binary output of a com-

piler, and underestimation of the usefulness of metaprogramming.

The latter issue is more complex to work with, although it may be less difficult from

a technical point of view. It originates from the fact that writing a particular code part

most often is easier compared to writing or improving code that can generate such code

parts for non-trivial cases. This issue requires additional measures to be taken to make

the system extensible enough to provide general means for handling special cases,

while minimizing the complexity of work with more common, simple cases.

Looking from the general point of view on this code translation approach, it still

remains useful in number of situations:

 Code translation, be it immediate compilation or interpretation, from high-level lan-

guage code into a target architecture is a fundamental aspect of software develop-

ment.

 Various development tools, such as linters or tools for minimization of source code,

do not possess the described issues by design because of their purposes: firstly, gen-

erated code is meant to be used directly (to be passed over the network, to be used

as a new version of old source code, etc.), which satisfies idea of code duplication

avoidance, secondly, code immutability can be either desirable or not applicable.

3.2 AST-Driven Approach

While a set of Python libraries, pyasn1 [7], offers to the user an ASN.1 compiler with

Python as a target language, it also provides predefined types that can be used to man-

ually describe an ASN.1 intermediate representation in order to manipulate it later using

generic code for encoding and decoding data. Thus it can be seen as corresponding to

the second technique mentioned, an AST-driven approach, depicted in Fig. 2.

While this approach is intended for rare cases when the included compiler does not

support a given specification (which may happen due to fact that ASN.1 set of standards

is complex and hard to implement completely) it may be also helpful when a high de-

gree of extensibility is required for data types (classes in the OOP sense in this case).

However, this approach has its own cons:

 The translation process is not automated and demands workload from the end-user.

 Such an implementation is more error prone.

 In case of upstream specification updates, manual implementation updates are nec-

essary.

 In case of major specification changes, it is harder to reason about correctness of the

update done.

Fig. 2. Typical schema of AST-based approach

The next part explains the necessary set of features that a language should provide and

architecture principles that allow a developer to partially or completely mitigate the

issues described in this section.

4 Compile Time Metaprogramming Test Case: the

Prerequisites and the ASN::META Module

Let’s take a look at the necessary components to work with ASN.1. The prerequisites

to operate on ASN.1 definitions consist of ASN.1 format file parser and a tool for de-

coding and encoding of data to and from the language’s native types. The ASN.1 stand-

ard covers both type and value definitions enclosed in modules which can import and

export types.

A common practical application of ASN.1 is the LDAP standard, and its definitions

are used as a test suite for the implementation. The test suite consists of a single ASN.1

module which is mostly comprised out of type definitions.

4.1 Parsing Module: ASN::Grammar

Given a textual representation of an ASN.1 description of LDAP types, the module has

to parse it and convert into it native Perl 6 types that user can work with later. With Perl

6 as a main implementation language, considering its relations to Perl family, imple-

menting a parsing component for a certain textual format requires little effort and is

handled by a grammar [21] that describes a subset of the ASN.1 standard which is re-

quired for full parsing of the LDAP specification.

The subset covered is summarized in table 1.

Table 1. Scope of the ASN.1 specification subset implemented

Definition ASN.1 specification ASN::Grammar

Simple types + +

String types + +/-

Complex types + +

Simple values + +/-

String values + -

Complex values + -

Recursive types + +/-

Here is an example of two types and a value definition in ASN.1 notation:

A ::= SEQUENCE {

 id INTEGER (0 .. maxInt),

 message OCTET STRING,

 value1 [0] INTEGER OPTIONAL,

 value2 [1] INTEGER OPTIONAL

}

B ::= NULL

maxInt INTEGER ::= 2147473647

Types can be divided into native types and custom types. Native types are predefined

in the ASN.1 standard and can be simple (a type that represents a single piece of data,

such as INTEGER, NULL or OCTET STRING) and complex (a type that represents a

set of values, ordered or not, of certain types, such as SEQUENCE). Custom types are

defined by a particular specification itself and can be used everywhere where native

type can be used. Constraints (such as the type of the “id” field is constrained to be

within the range of positive numbers up to the value defined later as “maxInt”) and

traits (fields “value1” and “value2” are optional in “A” type) can be applied to a type.

It is important to note the so-called “tags” in the “value1” and “value2” field defini-

tions. The ASN.1 group of standards is divided into two parts: a description of the

ASN.1 schema language and encoding-decoding rules for values of noted types, with

these two parts being loosely coupled by common type names. A number of encoding-

decoding rules exist, including binary encoding formats, such as BER (Basic Encoding

Rules), DER (Distinguished Encoding Rules), CER (Canonical Encoding Rules) and

PER (Packed Encoding Rules), as well as textual formats such as XER (XML Encoding

Rules) or ASN.1 SOAP.

Values encoded using binary encoding rules for type A can be seen as ambiguous,

because an integer parsed after the “message” field value can be recognized as either

the value of the “value1” field or of the “value2” field. This case is resolved using tags

– binary encoding rules’ standards that do not include explicit field names along with

the value itself encode its tag according to particular tagging schema, so the original

value can be parsed without ambiguity.

The ASN::Grammar module provides a “grammar” – a built-in Perl 6 mechanism

for writing parsers, comprised from rules defined in the grammar’s body block. Each

syntax part is described as a rule using the Perl 6 rule syntax, which is somewhat based

on traditional regular expression syntax. Rules can refer to other rules and be recursive,

allowing for parsing of non-regular languages. With the ability to express a parser in

this way, the definition of a grammar is similar to a syntax definition that is made in

Backus-Naur form, making such porting trivial. An example of rules in the grammar:

grammar ASN::Grammar {

 # Basic part

 token TOP { <module>+ }

 rule module { \n* <id-string> \n* 'DEFINITIONS' <de-

fault-tag> '::=' 'BEGIN' \n* <body>? \n* 'END' \n* }

 rule default-tag { <(<explicit-or-implicit-tag>)>

'TAGS' }

 token body { [<type-assignment> || <value-assign-

ment>]+ }

 …

 # Type part

 rule type-assignment { <id-string> '::=' <type> }

 …

}

Internally, Perl 6 analyzes the grammar description and automatically produces both

a lexical analyzer and a parser, avoiding having to write and maintain the two sepa-

rately. This may be considered as the frontend part of the first pass of compilation in a

two-pass compilation approach. Thus, we don’t need to resort to an external lexical

analyzer and syntactic parser generator tools. As the test document does not contain

complex values, this part of the ASN.1 specification was deliberately omitted when

implementing the ASN::Grammar module. As a next step, a class in ASN::Grammar

describes actions to be done on parse tree produced by the grammar. It converts the

parse tree into a more useful Perl 6 data structure: class instances, strings, integers, lists

and associative maps that hold all necessary information for further type generation:

particular types, constraints, tag information etc.

4.2 Encoder/decoder Module: ASN::BER

The second necessary component is an encoder-decoder library which can help the user

to map data values of certain native Perl 6 types into binary data and parse it back. It is

named ASN::BER as it is implemented according to the Basic Encoding Rules (BER)

standard (which is used in LDAP specification used as a test suite), using both native

language types and a set of rules with extensive use of multiple dispatch and the meta-

object protocol [22].

ASN::BER can be used in a manner similar to that described in section 3.2: it pro-

vides an encoder and decoder tool that works utilizing a mapping from ASN.1 types

into native Perl 6 types which the user can use to express the necessary ASN.1 type

definitions manually.

Both built-in and constructed types (such as OOP classes and roles) were used in the

mapping. Its simplified form (with trivial and repetitive cases being omitted) can be

seen in table 2.

Table 2. Key part of mapping of ASN.1 types into Perl 6 native types

ASN.1 type Perl 6 mapping

INTEGER Int

NULL class ASN-Null

OCTET STRING Str

UTF8String Str

ENUMERATED Perl 6 enum

SEQUENCE A class that implements the ASNSequence

role

CHOICE A class that implements the ASNChoice role

At the beginning, both OCTET STRING and UTF8String (as well as all other string

types) are mapped into the Perl 6 “Str” type which represents a string. However, string

types in ASN.1 can demand different binary representations or enforce specific re-

strictions based on exact type, so the ASN::BER module has to have a means to get

access to the particular ASN.1 string type that is implied for an encountered Perl 6 Str

value.

This is achieved by usage of roles that are mixed into the attribute metaobject if the

string is a part of a complex type, or by deriving a class from the role itself during

compilation time.

A typical ASN.1 string type implementation is made using three parts shown below:

UTF8String wrapper role

role ASN::Types::UTF8String does ASN::StringWrapper {}

“Trait” definition

multi trait_mod:<is>(Attribute $attr, :$UTF8String) {

 $attr does ASN::Types::UTF8String

}

Usage example

class A does ASNSequence {

 …

 has Str $.name is UTF8String;

 …

}

Firstly, an ASN::Types::UTF8String role is declared. Secondly, a “trait” is declared

which can be applied to an Attribute (class attributes are first-class citizens in Perl 6).

Finally, an example of such an application is presented. Perl 6 traits are similar to Java

annotations in the sense that they are being applied to declarations based on special

syntax and such application executes certain code on this declaration, but unlike Java

annotations the trait code runs at compile time and so can participate in the compilation

process (in this case, it adds a role to an attribute).

Complex types, such as SEQUENCE or CHOICE, can be expressed by composition

of roles offered in ASN::BER module. A user has to provide the data necessary for the

encoding-decoding process by implementing methods required by those roles.

Considering an ASN.1 type specification and with help of types of the module, a

user can express the necessary type, construct a value of this type and pass it to the

encoder, as shown in case 1 in Fig. 3.

A type value is a value that has to be encoded and the definition type is type infor-

mation that is obtained by the ASN::BER encoder from the value itself using the met-

aobject protocol and data provided in method implementations of a particular role. For

the passed value, the encoder calls appropriate multimethod based on the value’s type.

For complex values, information about attributes that comprise the complex value is

obtained by a call to an abstract method that returns attribute names in a particular order.

In this enforced order attributes of the class are retrieved and their value is encoded

based on its own appropriate type and value (if present). As a next step, encoded bytes

for each part of a complex type are concatenated and returned as the encoding result of

the type. This way, the implementation is made to be compact, extensible and self-

contained (no metadata has to be passed other than a typed value to get encoding re-

sults).

Fig. 3. Encoder/decoder schema

The decoder architecture is made in a way that allows it to imitate the encoder structure

to a high extent as shown in case 2 of Fig. 3. The main difference compared to the

encoder implementation lies in definition type: while in the case of the encoder its role

is taken by type metadata that is stored in a value itself, the decoder has to be instanti-

ated with a type object to take this role. In Perl 6, types (including classes, roles, meta-

objects etc.) are first-class citizens and are represented as type objects. Using a type

object, all necessary information for decoding a type can be gathered. Abstract role

methods overloaded by the user in case of a complex type that provide necessary infor-

mation for decoding, for example, order of attributes in a complex type, can be called

on the type object as well as on type instances during the decoding process.

For every simple and complex type a value is decoded. Simple values can be imme-

diately returned. Parts of the value of a complex type are added into an associative map,

and, as a next step, the map is passed into the type constructor method called on the

type object as arguments.

This way, normal native Perl 6 types have to be mixed with types offered by

ASN::BER module only to offer metadata that is used during binary encoding (such as

tags, exact ASN.1 string type etc.) and metadata that helps extensibility (for example,

an order of attributes and their names in a complex value is given explicitly, as a user

may want to store additional, non-ASN.1 data, in the class, and a heuristic that simply

collects all type attributes makes it impossible to implement without needing to intro-

duce additional rules for naming or composition schemas).

The architecture of the ASN::BER module is not specific to the BER standard, and

can be generalized to handle other encodings. With a common type interface, encoder

and decoder can be extracted into abstract roles. Each specialized encoder and decoder

pair is required to implement a number of multimethods that handle particular opera-

tions for specific types according to specialized rules enforced by the specification.

As the LDAP protocol is based on the BER standard, the primary goal was to imple-

ment this particular standard, while designing such a module architecture that will be

generic enough to ensure a high level of extensibility for implementing other standards.

4.3 ASN::META Module

The core of the system is a module called ASN::META. It utilizes the described ap-

proach of combining compile time code execution and the metaobject protocol to serve

as a bridge between the specification and end-user application [23].

The overall architecture is depicted in Fig. 4. Three main components are necessary:

the source text of the LDAP ASN.1 specification, an end-user application that uses the

types described in the specification, and the ASN::META module. It is worth noting

that while this implementation is specialized to ASN.1, the generic approach demon-

strated is not tied to particular library implementation or task.

As mentioned before, in Perl 6 it is possible to explicitly run arbitrary Perl 6 code at

compile time: a number of language constructions can be used to run code during a

compilation unit compilation process. The user of the library can pass data known at

compile time to the library and it is able to export different sets of symbols depending

on context (which includes the data passed). Exploiting this feature, the application

code passes a path to an ASN.1 specification to the library.

The Perl 6 compiler starts compiling ASN::META. It receives the path to the speci-

fication from the import statement, retrieves the specification text, parses definitions

using the ASN::Grammar module and generates a number of types based on it using

the metaobject protocol. The created types are exported and their metaobjects serialized

into the bytecode of the importing module.

Application code imports the types generated at compile time as if they were defined

explicitly in the ASN::META module.

Fig. 4. Compile time type generation approach application

Application’s possible ASN::META module inclusion code:

use ASN::META <file docs/spec/ldap.asn>;

Example of compilation unit inclusion statement is

given below

use Foo;

As shown, the statement that includes a compilation unit with certain data (a list of

strings formed from two elements in this case) does not differ much from the common

module inclusion statement presented next in the code example. The path passed is

received by the library code and then the specification is processed as described above.

As opposed to compilation into a textual representation of the high-level language,

no additional textual sources are generated. Data types are generated using the metaob-

ject protocol and then stored by the Perl 6 compiler as a bytecode as if they were defined

in the library using textual representation. A bytecode representation pre-compiled this

way is stored and is being reused by the Perl 6 compiler with the application as long as

the specification path remains the same (or a recompilation can be forced if necessary

for other conditions).

This is an example of code taken from the META::ASN module, which generates

classes for the ASN.1 SEQUENCE OF type, with additional comments added:

New class is created with name of $symbol-name

my $new-type = Metamodel::ClassHOW.new_type(name => $sym-

bol-name);

ASN.1 local tag is assigned to lexical variable

to be captured into method’s closure

my $tag-value = .value;

Add necessary method to newly created class

$new-type.^add_method('ASN-tag-value', method { $tag-

value });

If type of SEQUENCE OF is a builtin:

if $of-type.type (elem) $builtin-types {

 $new-type.^add_role(Positional[$of-type.type]);

} else { # Else just compile inner type

 $new-type.^add_role(Positional[compile-type($of-type,

%POOL, $of-type.type)]);

}

When Positional role that indicates SEQUENCE OF type

is applied to new class, compose type object instance

$new-type.^compose;

At last, populate custom types pool

to cache custom types already compiled

return %POOL{$symbol-name} = ('SEQUENCE OF', $new-type);

Perl 6 differentiates precompiled modules based on passed data. The created meta-

objects are saved into the importing module’s precompilation data. It makes it possible

to work with multiple end-user applications that use different ASN.1 specifications

without interference between them. For the end-user it looks like the ASN::META

module provides different type definitions for every specification passed, while it has

none and consists of purely type generator code.

Generated types are based on the specification passed and do not need manual en-

coding as opposed to an AST-based approach. However, a system of type generator

extensions can be implemented if demanded: as the whole system is language-hetero-

geneous, the end-user can write metaobject protocol-based code that transforms the

type created based on certain conditions. Then, the ASN::META library receives the

extensions as files and evaluates the code passed for necessary types, allowing for flex-

ible handling of special cases. Besides the described ad-hoc solution, other extension

system architectures are possible.

4.4 Encountered Issues

Considering the points above, it is worth noting certain obstacles that were encountered

as well as scope limitations of this paper:

 As Perl 6 was released not so long ago, relatively advanced features such as meta-

object protocol support remain a complex aspect of the language usage. Two bugs

related to class attributes attaching to a class using the metaobject protocol were

discovered by us and fixed by Rakudo team core members.

 During this research the most complete Perl 6 compiler, Rakudo, was used and while

the speed of code it generates is being quickly improved by its developers, it still

cannot compete with more mature implementations of scripting languages in terms

of efficiency.

 The presented parsing module, ASN::Grammar, does not cover a complete ASN.1

grammar, which is a purely implementation matter and its coverage and security is

to be improved eventually.

It is worth noting that the described issues are not a result of the usage of the specific

approach chosen, but rather temporary, implementation-only issues that can be miti-

gated. Rakudo matures with time and its stability and generated bytecode performance

is being constantly improved. The ASN::META, ASN::Grammar and ASN::BER mod-

ules are still being developed and the issues will be fixed eventually.

We can note discovered implementation-independent issues of the approach:

 For implementers, such a structure is more complex when it comes to debugging.

Bugs in code related to precompilation or a metaobject protocol implementation are

harder to debug compared to a situation where the target is source code.

 The approach demands a rich runtime environment to work. If the task demands an

efficient implementation, both memory-wise and performance-wise, generating a

highly optimized C code for a bare metal platform is the best possible approach.

Given that the aim of this paper is to apply a compile time metaobject programming

approach and analyze its advantages in solving the problem, the successful creation of

a useable ASN.1 toolchain that is suitable to serve as a foundation for LDAP imple-

mentation in Perl 6 meets this goal.

5 Conclusions

It can be concluded that the compile time metaobject programming approach used in

this paper can serve as a foundation for a sophisticated architecture for software librar-

ies. Being the case of metaprogramming with reflexive and self-modifying code it

makes it possible to build complex systems without introducing an additional mainte-

nance burden and keeping whole code base concise.

This test case implementation, a set of modules to work with ASN.1 in Perl 6, while

having room for further improvements (improving coverage of ASN.1 syntax that the

system can understand and compile, increasing test coverage, improving performance

and security means, implementing advanced features such as extensions support etc.),

has shown not only the ability to use Perl 6 for rapid development and producing com-

pact code, but also the approach itself being able to introduce new solutions to known

issues and being able to compete with well-known approaches to resolving a code gen-

eration issue, fusing theirs best parts while reducing disadvantages.

While the main objective was to observe and analyze particular traits that emerge

from the use of compile time metaprogramming outside of the scope of a macro system

in particular the test case of ASN.1 implementation for a programming language, this

work provides a solid foundation architecture for LDAP implementation.

References

1. Brady, E.: The IDRIS programming language – implementing embedded domain specific

languages with dependent types. In: Central European Functional Programming School - 5th

Summer School, CEFP 2013, Cluj-Napoca, Romania, 8 July–20 2013, Revised Selected Pa-

pers, pp. 115–186 (2013). doi: 10.1007/978-3-319-15940-9_4

2. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25 Years of

Model Checking. NCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008). doi: 10.1007/978-

3-540-69850-0_1

https://doi.org/10.1007/978-3-319-15940-9_4

3. International Telecommunication Union Homepage, Application fields of ASN.1.

https://www.itu.int/en/ITU-T/asn1/Pages/Application-fields-of-ASN-1.aspx

4. Langendoerfer, P., Koenig, H.: COCOS – A configurable SDL Compiler for Generating

Efficient Protocol Implementations. In: Dssouli, R., Bochmann, G.v., Lahav, Y. (eds.) SDL

1999 (1999). doi 10.1016/b978-044450228-5/50018-7

5. asn1c home page, Open Source ASN.1 Compiler. https://github.com/vlm/asn1c

6. Ai-qing, Y., Sheng-sheng, Y., Jin-li, Z., Hong-xing, G.: C++ template data structure map-

pings of ASN. 1 of ITU-T X. 680 suitable with PER (X. 691) and BER (X. 690). Wuhan

University Journal of Natural Sciences. 5, 285-288 (2000). doi 10.1007/BF02830135

7. ASN.1 library for Python Homepage, http://snmplabs.com/pyasn1/

8. Seibel, P.: Practical COMMON LISP. Apress, Berkeley, CA (2005). doi 10.1007/978-1-

4302-0017-8

9. Lenz, M.: Perl 6 fundamentals. Apress (2017). doi 10.1007/978-1-4842-2899-9

10. Kiczales, G., Des Rivières, J., Bobrow, D.: The art of the metaobject protocol. MIT Press,

Cambridge, Mass. (1991). doi 10.7551/mitpress/1405.001.0001

11. Perl 6 Books Homepage, https://perl6book.com/

12. Merelo Guervós, J.J., García-Valdez, J.M.: Going stateless in concurrent evolutionary algo-

rithms. In: Figueroa-García, J.C., López-Santana, E.R., Molano, J.I.R. (eds.) Applied Com-

puter Sciences in Engineering - 5th Workshop on Engineering Applications, WEA 2018,

Medellín, Colombia, October 17-19, 2018, Proceedings, Part I. Communications in Com-

puter and Information Science, vol. 915, pp. 17–29. Springer, Cham (2018). doi

10.1007/978-3-030-00350-0_2

13. Cro Services Homepage, https://cro.services/

14. Comma IDE Homepage, https://commaide.com/

15. Perl 6 Modules Homepage, https://modules.perl6.org/

16. Sebesta, R.: Concepts of programming languages - 10th edition. Pearson Addison Wesley,

Boston (2012).

17. Sheard, T., Jones, S.: Template meta-programming for Haskell. ACM SIGPLAN Notices.

37, 1-16 (2002). doi 10.1145/581690.581691

18. Solter, N., Kleper, S.: Professional C++. Wiley, Indianapolis, IN (2005).

19. Scharli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of behavior. In:

Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, Springer, Heidelberg (2003). doi

10.1007/978-3-540-45070-2_12

20. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A.: PyCUDA and Py-

OpenCL: A scripting-based approach to GPU run-time code generation. Parallel Computing.

38, 157-174 (2012). doi 10.1016/j.parco.2011.09.001

21. Getting beyond static vs. dynamic slides, Jonathan Worthington, http://jnthn.net/pa-

pers/2015-fosdem-static-dynamic.pdf

22. ASN::Grammar code repository, https://github.com/Altai-man/ASN-Grammar

23. ASN::BER code repository, https://github.com/Altai-man/ASN-BER

24. ASN::META code repository, https://github.com/Altai-man/ASN-META

https://perl6book.com/
https://cro.services/
https://commaide.com/
https://github.com/Altai-man/ASN-META

