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Abstract. With the ever-growing complexity of software systems already built 

and, more importantly, needing to be built in future, the need for research toward 

better methodologies, approaches and architectures is hard to overestimate. Ideas 

of novel software writing techniques are often implemented in tools in order to 

test out the pros and cons of the new technique, which may become generally 

accepted in the case of its successful application. This paper demonstrates a real 

world application of a recently introduced approach to the development of soft-

ware libraries using advanced metaprogramming features that are present in some 

programming languages, notably in a recently released language called Perl 6. 

This research takes as a subject a well-developed problem, ASN.1 (The Abstract 

Syntax Notation One) implementation, with two approaches to writing a solution 

being common, and depicts resulting disadvantages of those approaches. Next, it 

describes how the use of metaprogramming in Perl 6 allows mitigating such prob-

lems, along with obstacles encountered during the development process. A num-

ber of software libraries were designed and implemented utilizing this approach, 

and it is used as a part of ASN.1 support for the Perl 6 language. A brief expla-

nation of the solution’s internal architecture and ideas about possible future im-

provements are provided. 
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1 Introduction 

Various techniques can be used to reduce the complexity of implementing large-scale 

software systems while maintaining correctness: some are based on type-driven verifi-

cation [1], some on model-driven verification [2] and some on other less popular tech-

niques. The reason behind this is that, almost regardless of the level of abstraction pro-

vided by a common general purpose programming language, often beyond complex yet 

concise code pieces, a certain amount of so-called “boilerplate” code has to be written 

manually or generated. Manual coding done by a human is prone to errors, is known to 

be tedious and costly, has low ability to adapt to changes, so the idea of entrusting the 

process of generating the necessary code to the computer, guided by a set of rules, is 

not new and dates back to the first assemblers written. 



ASN.1 is a part of a group of telecom standards, a standard that describes a language 

used for describing data structures, and it is widely used in communications and net-

works [3]. Thus, a number of implementations have been created over the past decades, 

already proven to be sound, and highly optimized. However, at the same time, selecting 

this particular topic renders us an opportunity to look at mature implementations’ ar-

chitecture, and to contrast it with the approach this research examines. 

When it comes to cases of working with data structures and generating code for those 

structures, based on a formalized specification (which is easier to reason about com-

pared to actual software code), two widely used implementation techniques come to 

mind. As the ASN.1 standard provides formal means to describe data structures and 

rules for its encoding-decoding process, its implementations serve us as a particular 

cases of the approaches: 

 Writing a compiler that takes a specification as an input, parses it, forms an AST 

(Abstract Syntax Tree) and, using it as a guide, prepares a textual representation of 

the code in the target language that describes the specification in terms of both lan-

guage’s native type structures and specialized additional code (in the ASN.1 case it 

is code related to encoding and decoding data according to various encoding for-

mats). As a next step, the generated textual code representation has to be compiled 

and linked to other modules of the end-user application in order to be used. This 

approach is typically, but not necessary, used for compiled languages including C. 

It was successfully applied for years and a number of commercial ASN.1 compilers 

were developed [4, 5]. 

 Writing a library that offers a set of predefined types, with which the end-user can 

manually derive the necessary specialized types required by the schema using the 

target language. Inheritance or instantiation of such types gives the user the ability 

to use generalized additional code “out-of-the-box” by means of code reuse. This 

technique can be seen as a subset of the former, with the key difference is that the 

end-user has to manually translate abstract types given in the specification into na-

tive programming language types offered by the library (it can be seen as the parsing 

and AST constructing phases of a compiler). Such an approach can be found in [6, 

7]. 

However, both described approaches have particular disadvantages that arise from 

the nature of either compilation into high level language’s textual representation (we 

will refer to it as a “two-pass compilation approach”) or explicit AST-like structures 

usage (we will refer to it as an “AST-driven approach”). 

This paper explores an application of another technique, which is based on ability to 

execute programming language code at compile time (which takes a different angle on 

metaprogramming compared to Lisp-like macro support [8] and other derived AST 

transformation systems), that can naturally address those known disadvantages, using 

as an example a case of translation of an ASN.1 specification into native programming 

language types. We will use the Perl 6 language, which is a modern, multi-paradigm 

language with a rich set of features, built-in support for executing code parts at compile 

time [9] and an object system built upon a metaobject protocol [10]. 



Perl 6 is a brand new language released in late 2015 that originated from the well-

known Perl programming language development process and gradually became an in-

dependent language with numerous unique features and fresh approaches to known 

problems in language design. As well as other languages originally created for industry 

purposes and not inside of the scientific community, it is yet to become widely recog-

nized. 

However, while actual popularity of a language is known to be hard to measure, 

steadily increasing attention to the language can be observed: new books were written 

over last two years [11], open source, proprietary and scientific [12] projects are written 

in Perl 6 along with an increasing of number of dedicated development tools [13, 14] 

and a growing ecosystem [15]. 

The Perl 6 language proves to be worth working on for its features: a lot of them are 

rather powerful, compared to currently popular languages’ features, and a number of 

design solutions, including compile time code evaluation, which are unique to the lan-

guage, makes it very expressive when it comes to building abstractions. 

2 Related Work 

The idea of transforming programming code at compile time is not new: it dates back 

to the first Lisp implementations with its macro system that allowed the programmer to 

transform program elements themselves, in effect enabling extension of the language 

without the need to change the language implementation. In the decades following this 

invention, programming language implementations were predominantly compiler-

based, derived from the ALGOL family of programming language features, but starting 

in the late 80s and early 90s script languages have gained popularity, notable examples 

being Perl, Python, PHP and Ruby [16]. 

However, many of the currently popular programming languages support only the 

most basic compile time transformations such as constant folding, which are usually 

done by the compiler itself and are related to performance optimization. Therefore, the 

programmer has very little control over the compilation process. Even though they 

know the language well enough to do what is required at runtime, that knowledge can-

not be applied at compile time. 

Other than modern Lisp implementations like Common Lisp, that include a macro 

system, one can note a few languages that give the user the ability to do compile time 

calculations to a greater extent than constant folding-level computations: 

 Haskell has TemplateHaskell, a GHC compiler extension, that allows the user to 

utilize compile time metaprogramming based on AST transformations [17]. 

 Perl 5, although unlike Perl 6, Perl 5 is an interpreted language, so BEGIN code 

blocks that run during program parse stage will be re-calculated on every script start. 

While it cannot be considered to be exactly compile time, it was an origin of sorts. 

 C++ with its template system can be used for metaprogramming [18]. 

While the C++ template system is Turing-complete and can be used to implement a 

similar approach as this paper shows, it has to be recognized that C++ templates use a 



distinct “meta-language” to express its metaprogramming features, and this internal 

language is only a subset of C++. 

On the contrary, Perl 6 presents a powerful mix between static and dynamic behavior 

to user, and allows execution of normal Perl 6 code at compilation time in a similar way 

to normal code execution at program running time. 

Perl 6 implements advanced Object-Oriented Programming techniques including a 

Metaobject Protocol, which, among other possible applications, allows the programmer 

to define and patch types (OOP classes, but also roles [19], enumeration objects etc.) 

using so called “meta classes”. This way one can, using normal Perl 6 constructions, 

generate classes with attributes (data) and methods (operations), routines and more of 

the language’s first-class citizen values depending on currently accessible context. Gen-

erated symbols (a type or a callable object with a name) can be stored in the generated 

bytecode after compilation and used afterwards. 

A number of popular dynamic programming languages do support metaprogram-

ming to varying degrees, often providing ways to create and change types (even if they 

do not offer a complete metaobject protocol) as well as generating code at runtime. 

Runtime code generation can be used successfully for performance optimizations and 

the results can be cached [20], however it is rarely used to generate types for persistent 

use, mainly due to inconveniences during saving and exporting those types as they 

would be with normal compilation units. 

The key approach to exploiting Perl 6 features that allow overcoming it was pre-

sented by Worthington [21], who stressed its usefulness for library and framework writ-

ers. This paper presents an example of real-world application of the idea along with an 

analysis of the benefits it brings compared to well-known approaches. 

3 Overview of Common Approaches to Code Generation 

As this paper overviews a number of design solutions made in mature ASN.1 imple-

mentations, it has to be understood that the aim of this research is to evaluate a different 

approach to designing specification-driven implementations and the developed soft-

ware does not aim to compete with the mentioned implementations in terms of effi-

ciency, ASN.1 standard coverage completeness or security (although, without doubt, 

those characteristics are seen as important ones and can serve as directions for further 

research work in this area). 

Instead, it uses noted implementations as particular cases to compare with to analyze 

the benefits gained from a module written to take advantage of compile time evaluation 

with the full language available, as such module architecture can be generalized for a 

wider scope of cases. 

Among existing free and open source ASN.1 compilers, two widely used ones were 

chosen as examples: asn1c[6], a compiler written mainly in C that targets C++-compat-

ible C code, and pyasn1, set of libraries written in the Python programming language. 



3.1 A Two-Pass Compilation Approach 

A two-pass compilation approach schema is depicted in Fig.1. The first phase consists 

of using an ASN.1 compiler to produce source code in the target language. The second 

phase consists of using the target language compiler to process both generated source 

code and application code to later be linked and executed. 

 

Fig. 1. Typical schema of the compilation-based approach 

This approach has disadvantages both maintenance-wise and architecture-wise: 

 A certain amount of additional textual sources are generated just as an intermediate 

form, for its later compilation into a compiled module to link an application with. In 

case of a gradual protocol development process, where specification and end-user 

code are being developed simultaneously, each change requires full generation of 

new sources to be compiled. 

 Generated source code has to be immutable in a sense that its manual extension be-

comes, while possible, a maintenance burden. Changes introduced manually have to 

be re-applied every time the specification is changed and its re-compilation occurs 

as changes made will not be preserved in generated sources. Thus, in case that the 

end-user wants to process an ASN.1 type differently, an extension system has to be 

developed. With it in place, code generation can still be difficult from the point of 

view of typical programmer without experience in compiler writing, making exten-

sions code more error prone. 



The former issue is caused by a number of factors: lack of compiler APIs that allow 

for something more robust than text, but higher-level than the binary output of a com-

piler, and underestimation of the usefulness of metaprogramming. 

The latter issue is more complex to work with, although it may be less difficult from 

a technical point of view. It originates from the fact that writing a particular code part 

most often is easier compared to writing or improving code that can generate such code 

parts for non-trivial cases. This issue requires additional measures to be taken to make 

the system extensible enough to provide general means for handling special cases, 

while minimizing the complexity of work with more common, simple cases. 

Looking from the general point of view on this code translation approach, it still 

remains useful in number of situations: 

 Code translation, be it immediate compilation or interpretation, from high-level lan-

guage code into a target architecture is a fundamental aspect of software develop-

ment. 

 Various development tools, such as linters or tools for minimization of source code, 

do not possess the described issues by design because of their purposes: firstly, gen-

erated code is meant to be used directly (to be passed over the network, to be used 

as a new version of old source code, etc.), which satisfies idea of code duplication 

avoidance, secondly, code immutability can be either desirable or not applicable. 

3.2 AST-Driven Approach 

While a set of Python libraries, pyasn1 [7], offers to the user an ASN.1 compiler with 

Python as a target language, it also provides predefined types that can be used to man-

ually describe an ASN.1 intermediate representation in order to manipulate it later using 

generic code for encoding and decoding data. Thus it can be seen as corresponding to 

the second technique mentioned, an AST-driven approach, depicted in Fig. 2. 

While this approach is intended for rare cases when the included compiler does not 

support a given specification (which may happen due to fact that ASN.1 set of standards 

is complex and hard to implement completely) it may be also helpful when a high de-

gree of extensibility is required for data types (classes in the OOP sense in this case). 

However, this approach has its own cons: 

 The translation process is not automated and demands workload from the end-user. 

 Such an implementation is more error prone. 

 In case of upstream specification updates, manual implementation updates are nec-

essary.  

 In case of major specification changes, it is harder to reason about correctness of the 

update done. 



 

Fig. 2. Typical schema of AST-based approach 

The next part explains the necessary set of features that a language should provide and 

architecture principles that allow a developer to partially or completely mitigate the 

issues described in this section. 

4 Compile Time Metaprogramming Test Case: the 

Prerequisites and the ASN::META Module 

Let’s take a look at the necessary components to work with ASN.1. The prerequisites 

to operate on ASN.1 definitions consist of ASN.1 format file parser and a tool for de-

coding and encoding of data to and from the language’s native types. The ASN.1 stand-

ard covers both type and value definitions enclosed in modules which can import and 

export types. 

A common practical application of ASN.1 is the LDAP standard, and its definitions 

are used as a test suite for the implementation. The test suite consists of a single ASN.1 

module which is mostly comprised out of type definitions. 

4.1 Parsing Module: ASN::Grammar 

Given a textual representation of an ASN.1 description of LDAP types, the module has 

to parse it and convert into it native Perl 6 types that user can work with later. With Perl 

6 as a main implementation language, considering its relations to Perl family, imple-

menting a parsing component for a certain textual format requires little effort and is 

handled by a grammar [21] that describes a subset of the ASN.1 standard which is re-

quired for full parsing of the LDAP specification. 

The subset covered is summarized in table 1. 



Table 1. Scope of the ASN.1 specification subset implemented 

Definition ASN.1 specification ASN::Grammar 

Simple types + + 

String types + +/- 

Complex types + + 

Simple values + +/- 

String values + - 

Complex values + - 

Recursive types + +/- 

Here is an example of two types and a value definition in ASN.1 notation: 

A ::= SEQUENCE { 

    id INTEGER (0 .. maxInt), 

    message OCTET STRING, 

    value1 [0] INTEGER OPTIONAL, 

    value2 [1] INTEGER OPTIONAL 

} 

B ::= NULL 

maxInt INTEGER ::= 2147473647 

Types can be divided into native types and custom types. Native types are predefined 

in the ASN.1 standard and can be simple (a type that represents a single piece of data, 

such as INTEGER, NULL or OCTET STRING) and complex (a type that represents a 

set of values, ordered or not, of certain types, such as SEQUENCE). Custom types are 

defined by a particular specification itself and can be used everywhere where native 

type can be used. Constraints (such as the type of the “id” field is constrained to be 

within the range of positive numbers up to the value defined later as “maxInt”) and 

traits (fields “value1” and “value2” are optional in “A” type) can be applied to a type. 

It is important to note the so-called “tags” in the “value1” and “value2” field defini-

tions. The ASN.1 group of standards is divided into two parts: a description of the 

ASN.1 schema language and encoding-decoding rules for values of noted types, with 

these two parts being loosely coupled by common type names. A number of encoding-

decoding rules exist, including binary encoding formats, such as BER (Basic Encoding 

Rules), DER (Distinguished Encoding Rules), CER (Canonical Encoding Rules) and 

PER (Packed Encoding Rules), as well as textual formats such as XER (XML Encoding 

Rules) or ASN.1 SOAP. 

Values encoded using binary encoding rules for type A can be seen as ambiguous, 

because an integer parsed after the “message” field value can be recognized as either 

the value of the “value1” field or of the “value2” field. This case is resolved using tags 

– binary encoding rules’ standards that do not include explicit field names along with 

the value itself encode its tag according to particular tagging schema, so the original 

value can be parsed without ambiguity. 

The ASN::Grammar module provides a “grammar” – a built-in Perl 6 mechanism 

for writing parsers, comprised from rules defined in the grammar’s body block. Each 



syntax part is described as a rule using the Perl 6 rule syntax, which is somewhat based 

on traditional regular expression syntax. Rules can refer to other rules and be recursive, 

allowing for parsing of non-regular languages. With the ability to express a parser in 

this way, the definition of a grammar is similar to a syntax definition that is made in 

Backus-Naur form, making such porting trivial. An example of rules in the grammar: 

grammar ASN::Grammar { 

    # Basic part 

    token TOP { <module>+ } 

    rule module { \n* <id-string> \n* 'DEFINITIONS' <de-

fault-tag> '::=' 'BEGIN' \n* <body>? \n* 'END' \n* } 

    rule default-tag { <( <explicit-or-implicit-tag> )> 

'TAGS' } 

    token body { [ <type-assignment> || <value-assign-

ment> ]+ } 

    … 

    # Type part 

    rule type-assignment { <id-string> '::=' <type> } 

    … 

} 

Internally, Perl 6 analyzes the grammar description and automatically produces both 

a lexical analyzer and a parser, avoiding having to write and maintain the two sepa-

rately. This may be considered as the frontend part of the first pass of compilation in a 

two-pass compilation approach. Thus, we don’t need to resort to an external lexical 

analyzer and syntactic parser generator tools. As the test document does not contain 

complex values, this part of the ASN.1 specification was deliberately omitted when 

implementing the ASN::Grammar module. As a next step, a class in ASN::Grammar 

describes actions to be done on parse tree produced by the grammar. It converts the 

parse tree into a more useful Perl 6 data structure: class instances, strings, integers, lists 

and associative maps that hold all necessary information for further type generation: 

particular types, constraints, tag information etc. 

4.2 Encoder/decoder Module: ASN::BER 

The second necessary component is an encoder-decoder library which can help the user 

to map data values of certain native Perl 6 types into binary data and parse it back. It is 

named ASN::BER as it is implemented according to the Basic Encoding Rules (BER) 

standard (which is used in LDAP specification used as a test suite), using both native 

language types and a set of rules with extensive use of multiple dispatch and the meta-

object protocol [22]. 

ASN::BER can be used in a manner similar to that described in section 3.2: it pro-

vides an encoder and decoder tool that works utilizing a mapping from ASN.1 types 

into native Perl 6 types which the user can use to express the necessary ASN.1 type 

definitions manually. 



Both built-in and constructed types (such as OOP classes and roles) were used in the 

mapping. Its simplified form (with trivial and repetitive cases being omitted) can be 

seen in table 2. 

Table 2. Key part of mapping of ASN.1 types into Perl 6 native types 

ASN.1 type Perl 6 mapping 

INTEGER Int 

NULL class ASN-Null 

OCTET STRING Str 

UTF8String Str 

ENUMERATED Perl 6 enum 

SEQUENCE A class that implements the ASNSequence 

role 

CHOICE A class that implements the ASNChoice role 

At the beginning, both OCTET STRING and UTF8String (as well as all other string 

types) are mapped into the Perl 6 “Str” type which represents a string. However, string 

types in ASN.1 can demand different binary representations or enforce specific re-

strictions based on exact type, so the ASN::BER module has to have a means to get 

access to the particular ASN.1 string type that is implied for an encountered Perl 6 Str 

value. 

This is achieved by usage of roles that are mixed into the attribute metaobject if the 

string is a part of a complex type, or by deriving a class from the role itself during 

compilation time. 

A typical ASN.1 string type implementation is made using three parts shown below: 

# UTF8String wrapper role 

role ASN::Types::UTF8String does ASN::StringWrapper {} 

# “Trait” definition 

multi trait_mod:<is>(Attribute $attr, :$UTF8String) { 

    $attr does ASN::Types::UTF8String 

} 

# Usage example 

class A does ASNSequence { 

    … 

    has Str $.name is UTF8String; 

    … 

} 

Firstly, an ASN::Types::UTF8String role is declared. Secondly, a “trait” is declared 

which can be applied to an Attribute (class attributes are first-class citizens in Perl 6). 

Finally, an example of such an application is presented. Perl 6 traits are similar to Java 

annotations in the sense that they are being applied to declarations based on special 

syntax and such application executes certain code on this declaration, but unlike Java 



annotations the trait code runs at compile time and so can participate in the compilation 

process (in this case, it adds a role to an attribute). 

Complex types, such as SEQUENCE or CHOICE, can be expressed by composition 

of roles offered in ASN::BER module. A user has to provide the data necessary for the 

encoding-decoding process by implementing methods required by those roles. 

Considering an ASN.1 type specification and with help of types of the module, a 

user can express the necessary type, construct a value of this type and pass it to the 

encoder, as shown in case 1 in Fig. 3. 

A type value is a value that has to be encoded and the definition type is type infor-

mation that is obtained by the ASN::BER encoder from the value itself using the met-

aobject protocol and data provided in method implementations of a particular role. For 

the passed value, the encoder calls appropriate multimethod based on the value’s type. 

For complex values, information about attributes that comprise the complex value is 

obtained by a call to an abstract method that returns attribute names in a particular order. 

In this enforced order attributes of the class are retrieved and their value is encoded 

based on its own appropriate type and value (if present). As a next step, encoded bytes 

for each part of a complex type are concatenated and returned as the encoding result of 

the type. This way, the implementation is made to be compact, extensible and self-

contained (no metadata has to be passed other than a typed value to get encoding re-

sults). 

 

Fig. 3. Encoder/decoder schema 

The decoder architecture is made in a way that allows it to imitate the encoder structure 

to a high extent as shown in case 2 of Fig. 3. The main difference compared to the 

encoder implementation lies in definition type: while in the case of the encoder its role 

is taken by type metadata that is stored in a value itself, the decoder has to be instanti-

ated with a type object to take this role. In Perl 6, types (including classes, roles, meta-

objects etc.) are first-class citizens and are represented as type objects. Using a type 

object, all necessary information for decoding a type can be gathered. Abstract role 

methods overloaded by the user in case of a complex type that provide necessary infor-

mation for decoding, for example, order of attributes in a complex type, can be called 

on the type object as well as on type instances during the decoding process. 



For every simple and complex type a value is decoded. Simple values can be imme-

diately returned. Parts of the value of a complex type are added into an associative map, 

and, as a next step, the map is passed into the type constructor method called on the 

type object as arguments. 

This way, normal native Perl 6 types have to be mixed with types offered by 

ASN::BER module only to offer metadata that is used during binary encoding (such as 

tags, exact ASN.1 string type etc.) and metadata that helps extensibility (for example, 

an order of attributes and their names in a complex value is given explicitly, as a user 

may want to store additional, non-ASN.1 data, in the class, and a heuristic that simply 

collects all type attributes makes it impossible to implement without needing to intro-

duce additional rules for naming or composition schemas). 

The architecture of the ASN::BER module is not specific to the BER standard, and 

can be generalized to handle other encodings. With a common type interface, encoder 

and decoder can be extracted into abstract roles. Each specialized encoder and decoder 

pair is required to implement a number of multimethods that handle particular opera-

tions for specific types according to specialized rules enforced by the specification. 

As the LDAP protocol is based on the BER standard, the primary goal was to imple-

ment this particular standard, while designing such a module architecture that will be 

generic enough to ensure a high level of extensibility for implementing other standards. 

4.3 ASN::META Module 

The core of the system is a module called ASN::META. It utilizes the described ap-

proach of combining compile time code execution and the metaobject protocol to serve 

as a bridge between the specification and end-user application [23]. 

The overall architecture is depicted in Fig. 4. Three main components are necessary: 

the source text of the LDAP ASN.1 specification, an end-user application that uses the 

types described in the specification, and the ASN::META module. It is worth noting 

that while this implementation is specialized to ASN.1, the generic approach demon-

strated is not tied to particular library implementation or task. 

As mentioned before, in Perl 6 it is possible to explicitly run arbitrary Perl 6 code at 

compile time: a number of language constructions can be used to run code during a 

compilation unit compilation process. The user of the library can pass data known at 

compile time to the library and it is able to export different sets of symbols depending 

on context (which includes the data passed). Exploiting this feature, the application 

code passes a path to an ASN.1 specification to the library. 

The Perl 6 compiler starts compiling ASN::META. It receives the path to the speci-

fication from the import statement, retrieves the specification text, parses definitions 

using the ASN::Grammar module and generates a number of types based on it using 

the metaobject protocol. The created types are exported and their metaobjects serialized 

into the bytecode of the importing module. 

Application code imports the types generated at compile time as if they were defined 

explicitly in the ASN::META module. 



 

Fig. 4. Compile time type generation approach application 

Application’s possible ASN::META module inclusion code: 

use ASN::META <file docs/spec/ldap.asn>; 

# Example of compilation unit inclusion statement is 

given below 

use Foo;  

As shown, the statement that includes a compilation unit with certain data (a list of 

strings formed from two elements in this case) does not differ much from the common 

module inclusion statement presented next in the code example. The path passed is 

received by the library code and then the specification is processed as described above. 

As opposed to compilation into a textual representation of the high-level language, 

no additional textual sources are generated. Data types are generated using the metaob-

ject protocol and then stored by the Perl 6 compiler as a bytecode as if they were defined 

in the library using textual representation. A bytecode representation pre-compiled this 

way is stored and is being reused by the Perl 6 compiler with the application as long as 

the specification path remains the same (or a recompilation can be forced if necessary 

for other conditions). 

This is an example of code taken from the META::ASN module, which generates 

classes for the ASN.1 SEQUENCE OF type, with additional comments added: 

# New class is created with name of $symbol-name 

my $new-type = Metamodel::ClassHOW.new_type(name => $sym-

bol-name); 

# ASN.1 local tag is assigned to lexical variable 

# to be captured into method’s closure 

my $tag-value = .value; 

# Add necessary method to newly created class 

$new-type.^add_method('ASN-tag-value', method { $tag-

value }); 

# If type of SEQUENCE OF is a builtin: 

if $of-type.type (elem) $builtin-types { 

    $new-type.^add_role(Positional[$of-type.type]); 



} else { # Else just compile inner type 

    $new-type.^add_role(Positional[compile-type($of-type, 

%POOL, $of-type.type)]); 

} 

# When Positional role that indicates SEQUENCE OF type 

# is applied to new class, compose type object instance 

$new-type.^compose; 

# At last, populate custom types pool 

# to cache custom types already compiled 

return %POOL{$symbol-name} = ('SEQUENCE OF', $new-type); 

Perl 6 differentiates precompiled modules based on passed data. The created meta-

objects are saved into the importing module’s precompilation data. It makes it possible 

to work with multiple end-user applications that use different ASN.1 specifications 

without interference between them. For the end-user it looks like the ASN::META 

module provides different type definitions for every specification passed, while it has 

none and consists of purely type generator code. 

Generated types are based on the specification passed and do not need manual en-

coding as opposed to an AST-based approach. However, a system of type generator 

extensions can be implemented if demanded: as the whole system is language-hetero-

geneous, the end-user can write metaobject protocol-based code that transforms the 

type created based on certain conditions. Then, the ASN::META library receives the 

extensions as files and evaluates the code passed for necessary types, allowing for flex-

ible handling of special cases. Besides the described ad-hoc solution, other extension 

system architectures are possible. 

4.4 Encountered Issues 

Considering the points above, it is worth noting certain obstacles that were encountered 

as well as scope limitations of this paper: 

 As Perl 6 was released not so long ago, relatively advanced features such as meta-

object protocol support remain a complex aspect of the language usage. Two bugs 

related to class attributes attaching to a class using the metaobject protocol were 

discovered by us and fixed by Rakudo team core members. 

 During this research the most complete Perl 6 compiler, Rakudo, was used and while 

the speed of code it generates is being quickly improved by its developers, it still 

cannot compete with more mature implementations of scripting languages in terms 

of efficiency. 

 The presented parsing module, ASN::Grammar, does not cover a complete ASN.1 

grammar, which is a purely implementation matter and its coverage and security is 

to be improved eventually. 

It is worth noting that the described issues are not a result of the usage of the specific 

approach chosen, but rather temporary, implementation-only issues that can be miti-

gated. Rakudo matures with time and its stability and generated bytecode performance 



is being constantly improved. The ASN::META, ASN::Grammar and ASN::BER mod-

ules are still being developed and the issues will be fixed eventually. 

We can note discovered implementation-independent issues of the approach: 

 For implementers, such a structure is more complex when it comes to debugging. 

Bugs in code related to precompilation or a metaobject protocol implementation are 

harder to debug compared to a situation where the target is source code. 

 The approach demands a rich runtime environment to work. If the task demands an 

efficient implementation, both memory-wise and performance-wise, generating a 

highly optimized C code for a bare metal platform is the best possible approach. 

Given that the aim of this paper is to apply a compile time metaobject programming 

approach and analyze its advantages in solving the problem, the successful creation of 

a useable ASN.1 toolchain that is suitable to serve as a foundation for LDAP imple-

mentation in Perl 6 meets this goal. 

5 Conclusions 

It can be concluded that the compile time metaobject programming approach used in 

this paper can serve as a foundation for a sophisticated architecture for software librar-

ies. Being the case of metaprogramming with reflexive and self-modifying code it 

makes it possible to build complex systems without introducing an additional mainte-

nance burden and keeping whole code base concise. 

This test case implementation, a set of modules to work with ASN.1 in Perl 6, while 

having room for further improvements (improving coverage of ASN.1 syntax that the 

system can understand and compile, increasing test coverage, improving performance 

and security means, implementing advanced features such as extensions support etc.), 

has shown not only the ability to use Perl 6 for rapid development and producing com-

pact code, but also the approach itself being able to introduce new solutions to known 

issues and being able to compete with well-known approaches to resolving a code gen-

eration issue, fusing theirs best parts while reducing disadvantages. 

While the main objective was to observe and analyze particular traits that emerge 

from the use of compile time metaprogramming outside of the scope of a macro system 

in particular the test case of ASN.1 implementation for a programming language, this 

work provides a solid foundation architecture for LDAP implementation. 
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