
Querying Heterogeneous Linked Building Data
with Context-expanded GraphQL Queries?

Jeroen Maurits Werbrouck1,2, Madhumitha Senthilvel1, Jakob
Beetz1[0000−0002−9975−9206], and Pieter Pauwels2[0000−0001−8020−4609]

1 Faculty of Architecture, RWTH Aachen University, 52062 Aachen, Germany
2 Dept. of Architecture and Urban Planning, Ghent University, 9000 Ghent, Belgium

Abstract. Linked Data in the construction industry is a topic gain-
ing serious interest over the last years. However, this interest remains
largely academic and has not sparked much adoption of web technolo-
gies in the field. To nourish adoption of Linked Data in practice, access
to the data has to be made more easy. SPARQL, the recommended RDF
query language, has proven very powerful for retrieving and updating
RDF datasets. However, due to its verbosity and complexity, it is of-
ten considered a threshold for developers to implement in their tools.
In this paper, we compare SPARQL with Linked Data querying lan-
guages that extend the GraphQL syntax, in context of querying building
datasets: HyperGraphQL and GraphQL-LD. Since it went open source
in 2015, GraphQL has been adopted by a large community of develop-
ers, partly due to its elegance and conciseness. As a use case, the queries
are performed on an RDF-based multi-model that relies on the recent
ISO standard ICDD (ISO 21597). ICDD interlinks information on a sub-
document identifier level, based on OWL. It is aimed at the industry in
that it adds a layer of Linked Data to documentation formats that are
still widely used in practice: IFC, spreadsheets, imagery etc. Therefore,
it is considered a tuned use case for comparing these different RDF query
languages.

Keywords: Linked Data · ICDD · SPARQL · GraphQL.

1 Introduction

The advent of Building Information Modelling (BIM) has brought a revolution
to the way a construction project is designed, constructed and maintained. BIM
addresses the need for an ‘information hub’ that contains and manages informa-
tion on architecture, engineering and ’Mechanical, Electrical, Plumbing’ (MEP)
topics. Through BIM, professionals in these disciplines are able to communicate
in a much more streamlined way than before.

? Supported by the European Union’s Horizon 2020 Research and Innovation Program
under grant agreement No 820773, and the Ghent University Special Research Fund
(BOF).

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

21

In an ideal building industry, linking of available information happens, and
happens on a data level. This has been proposed multiple times since the late
2000s [2, 1] and is therefore actively researched by multiple researchers. One of
the most known achievements is the translation of the IFC (Industry Foundation
Classes) schema into ifcOWL; its Linked Data equivalent [2, 5]. A more recent
trend is to focus on smaller, modular ontologies, often aligning with the Building
Topology Ontology (BOT) [6, 7]. Each one of these smaller ontologies targets
one aspect of the building industry, yielding a flexible and functional way for
knowledge modelling when combined with one another.

In the building industry field, however, the use of RDF (Resource Description
Framework), OWL (Web Ontology Language) and other web technologies is still
largely an academic topic, and not all pitfalls are solved to convince BIM software
providers and the industry to dive into the world of Linked Building Data. More
achievable at the moment is a cross-document way of linking sources and BIM
documents, instead of implementing the project entirely in RDF. However, this
is not applied very frequently either. To improve an ontology-based, link set-
oriented approach [13], the Information Container for Data Drop (ICDD)3 is in
its final stages of international standardisation as ISO 21597. ICDD provides a
standard way to link documents with one another. It is a container-like structure
that uses a Container OWL ontology and a Linkset OWL ontology that contain
the definitions to describe and link document data with nodes in RDF graphs
or other document data. Using the provided terminologies, information linking
on sub-document level could be reached. This means that, for example, a single
cell in a spreadsheet can be linked to an identifier in an IFC document and a
pixel zone in an image. The resulting instance graphs describe metadata and
links between both internal sources included in the ICDD container folder, or
external data sets, located somewhere on the web.

In the same ideal world, RDF data is queried by use of the official W3C recom-
mendation SPARQL (SPARQL Protocol and RDF Query Language)4. However,
SPARQL is often considered too high a threshold for developers to implement in
their tools as a querying language [14], which is why different initiatives are set
up to lower this threshold, often based on JSON-LD5 contexts. These initiatives
focus either on direct implementation in programming languages, such as LDflex6

for Javascript or on language-independent solutions such as GraphQL extensions
for Linked Data [12]: HyperGraphQL[9] and GraphQL-LD [11]. GraphQL[3] was
originally constructed by Facebook Inc. in 2012 and developed as an open stan-
dard from 2015 on. It can be both used for data querying and as an API querying
language. A general overview on the main differences between HyperGraphQL
and GraphQL-LD for application in cloud-based collaboration networks for the
building industry is given in [16]. With respect to cloud-based applications, [16]
conclude that GraphQL-LD is a more flexible approach, due to its server- and

3 https://www.iso.org/standard/74389.html
4 https://www.w3.org/TR/sparql11-query/
5 https://www.w3.org/2018/jsonld-cg-reports/json-ld/
6 https://github.com/RubenVerborgh/LDflex

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

22

schemaless deployment. In this paper, we investigate the potential of both Hy-
perGraphQL and GraphQL when querying a fixed, local dataset. The discussed
use case differs from the one in [16] in that it does not focus on cloud-based ser-
vices, but on querying the available information in a link set container, namely
ICDD, as a dump file of the available project information. Using ICDD, the
ontologies that are used within a container are known, and most data can be
queried through a single endpoint.

2 Related work

2.1 Information Container for Data Drop

In its own words, ICDD has been developed ‘in response to the need of the con-
struction industry to handle multiple documents as one information delivery or
data drop.’ It is a successor of the Dutch COINS standard and fits in a tradition
of ontology-based management of multi-models [8, 4, 13]. Information elements
within a container can be linked with one another and with external data by
making use of Semantic Web technologies. These relationships strengthen the se-
mantic quality of the container, because they allow to refer to other data, even if
this data is not structured following RDF principles. For the construction indus-
try, typically slow in its adoption of new technologies, ICDD provides a bridge
between documents structured in previously incompatible data formats. From an
industry point of view, ICDD containers could be considered as a package used
to send a linked file repository, to store a particular version or state of a complex
project. Although it allows to refer to external documents, the standard focuses
on the description of internal documents, assuming that this scenario, where all
referred documents are contained in the ICDD folder, occurs more frequently.
In such situation, an efficient and accessible way to query the available project
data stored in the container could be of use. From a research point of view,
ICDD might provide an interesting way to store and link data formats for which
an RDF representation is not considered an efficient solution, such as imagery,
point clouds or geometric representations. A distributed web-based ecosystem
for building projects may use the ICDD ontologies to semantically link RDF
building data with non-RDF, document-based project information, rather than
focusing on creating a dump folder (although this might be an interesting side
effect) [15].

A container in .icdd format (using a ZIP-compression) consists of a fixed
folder structure, with separations between ontologies (Ontology resources), doc-
uments (Payload documents), specific linksets (Payload triples) and content de-
scription (index.rdf) (Fig. 1). Graphs that describe a container’s content and
links between documents are stored in different graphs, but refer to the same
URIs of documents. A visual graph depicting the link between two documents
is given in Fig. 2.

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

23

Fig. 1. Hierarchy of folders and files in a container (source: Information container for
data drop - Exchange specification - Part 1: Container)

Fig. 2. RDF-based link between identifiers in two different documents: an IFC file and
a spreadsheet

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

24

2.2 GraphQL in a Linked Data context

GraphQL7 is both a data query language and a specification to minimise and
optimise data transfer over the web over a GraphQL API. It is specifically aimed
at improving client-server interactions and has been adopted by multiple large
players on the web. Its core exists of a schema that describes the data to use: its
class, its fields and the classes or datatypes those fields may refer to. From this
perspective, these schemes can be visualised as graphs. However, they should
not be interpreted as RDF graphs, as the types and fields that are used are not
uniquely identifiable, as is the case with RDF graphs. Nevertheless, this structure
allows to describe interlinked data in a coherent way, to query this data and to
update or delete it. One of the reasons GraphQL had such an adoption rate
over the last years, is the simplicity of querying: essentially, it requires the client
to state the desired classes and their fields, possibly accompanied by specific
parameters (Table 1). The response will be a JSON object. This simplicity stands
in contrast to, for example, SPARQL: although SPARQL is more expressive, a
lot of developers prefer the much more minimalistic syntax of GraphQL.

Table 1. Example of a nested GraphQL query and result

Query Result
{ {

architect { "data":
name “architect": {
friends { "name": "Le Corbusier",

name "friends": [
} {

} "name": "Ludwig Mies van der Rohe"
} },

{
"name": "Rem Koolhaas"

},
{

"name": "Andrea Palladio"
}

]
}

}
}

Although GraphQL has essentially no relationship to RDF, a GraphQL schema
could be provided with the universal context that is missing in the original speci-
fication. Such context would extend the schema to the level of the semantic web,
using IRIs. Thus far, two open source projects have implemented this exten-
sion in a slightly different way: either by implementing the original specification
7 https://graphql.org/

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

25

and schema syntax (HyperGraphQL) or by only adopting the query syntax and
translate it to SPARQL ‘under-the-hood’ (GraphQL-LD).

HyperGraphQL In the approach of HyperGraphQL, an intermediary service is
set up, connecting the GraphQL client with the RDF graphs to be queried. Just
like in a ’classic’ GraphQL approach, HyperGraphQL needs a schema that de-
fines the right types and fields. In RDF terms, the types that are defined relate to
the resources defined in an ontology, which means instances of owl:Class as well
as instances of owl:Property. The GraphQL types that refer to an owl:Class
are then extended by fields that relate to the properties that have this class as
a domain, ‘pointing’ at their range. Types that are not included in the schema,
cannot be queried. This provides the data supplier with a mechanism of fine-
grained selection of which datatypes can be queried via the ‘lens’ of a GraphQL
schema. A subset of a schema applied to the ICDD, is depicted in Listing 1.1.

type __Context {
InternalDocument : _@href (i r i : " c t : InternalDocument ")
f i l e t y p e : _@href (i r i : " c t : f i l e t y p e ")
belongsToContainer : _@href (i r i : " c t : belongsToContainer ")
Conta ine rDesc r ip t i on : _@href (i r i : " c t : Conta ine rDesc r ip t i on ")

}

type InternalDocument @serv ice (id : " icdd ") {
f i l ename : S t r ing @serv ice (id : " icdd ")
belongsToContainer : [Conta ine rDesc r ip t ion] @serv ice (id : " icdd ")

}

type f i l e t y p e @serv ice (id : " icdd ") {
}

type belongsToContainer @serv ice (id : " icdd ") {
}

type Conta inerDesc r ip t i on @serv ice (id : " icdd ") {
[. . .]

}

Listing 1.1. Fragment of a HyperGraphQL schema. <Container> in the Context
should be replaced with the original URI.

Apart from that, a HyperGraphQL instance needs a config.json file as a setup
guide (Listing 1.2. The config.json file states data for setting up the server, such
as its name, the schema to use and the hosting port. Furthermore, it defines the
RDF graphs that can be queried by providing a local path or URI to the graph.
Multiple graphs can be included in one configuration file, although types in a
schema can only be used to query one service. For example, the types defined
in Listing 1.1 are set to be queried against the graph with ‘icdd’ as a name (de-
fined in the config.json file). This means that for querying multiple graphs with

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

26

the same types, these should be merged before querying. Listing 1.2 depicts a
schema that uses a schema with name schemaICDD.graphl (relative path) and
queries a local TTL graph with id ‘icdd’.

{
"name" : " icdd−hgql " ,
"schema " : "schemaICDD . graphql " ,
" s e r v e r " : {

" port " : 8082 ,
" graphql " : "/ graphql " ,
" g raph iq l " : "/ g raph iq l "

} ,
" s e r v i c e s " : [

{
" id " : " icdd " ,
" type " : "LocalModelSPARQLService " ,
" f i l e p a t h " : " s r c /main/ r e s ou r c e s /ICDD. t t l " ,
" f i l e t y p e " : "TTL"

}
]

}

Listing 1.2. Example of a config.json file used by a HyperGraphQL service.

GraphQL-LD In contrast with the HyperGraphQL approach, GraphQL-LD
does not require an additional service to be set up between server and client
[11]. Instead, it takes a GraphQL query and expands it with a JSON-LD con-
text. These are then translated into a SPARQL equivalent using a module called
‘GraphQL to SPARQL algebra’ 8. The RDF datastore can then be queried us-
ing the resulting SPARQL query. A second module, called ‘SPARQL results to
tree’9 translates the results of such query to a tree structure that resembles
the structure of a ‘classic’ GraphQL query. GraphQL-LD can also directly be
implemented in Javascript applications, due to its integration in the Comunica
Framework [10].

Comparison Both solutions have their merits and disadvantages. As they are
essentially querying tree structures, they are less expressive than SPARQL, but
they allow a more accessible way of querying basic RDF datasets. Nevertheless,
neither of them has the option to perform ‘mutations’, which can alter an existing
database. Developers who want their apps to work with existing RDF databases
(i.e. creating, reading, updating, deleting), can currently only read data if they
use a GraphQL syntax. Furthermore, both are works in progress, which means
not all expressivity of GraphQL can be implemented. For example, the concept
8 https://github.com/rubensworks/graphql-to-sparql.js
9 https://github.com/rubensworks/sparqljson-to-tree.js

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

27

of subclasses is available in GraphQL, but not in HyperGraphQL: querying some
fields of a product:BuildingElement will not automatically query these fields
for subclasses defined in the ontology (product:Door or product:Window will
not be included in the results), because, as far as we know, there is currently no
equivalent of GraphQL Union or Interface implemented in HyperGraphQL. In
the case of GraphQL-LD, this is less of a problem, since the eventual query is
performed using SPARQL. If the query is performed against a SPARQL endpoint
with reasoning, there is no real difference with an ‘original’ SPARQL query.
A disadvantage (in certain contexts) of GraphQL-LD, on the other hand, is
that it is ’predicate-oriented’, which makes it difficult to perform subject-based
queries, requiring a workaround that complicates the GraphQL query itself. A
more detailed comparison between both query languages has been made by [16],
focusing on their potential for distributed services in the building industry.

In the next section, an ICDD container will be queried using these ap-
proaches: HyperGraphQL, GraphQL-LD and SPARQL. A GraphQL schema and
config.json for HyperGraphQL is automatically generated with a basic convertor
tool in development10, as well as a JSON context for GraphQL-LD.

3 Use case: querying an ICDD container

The sample dataset ‘usecase_1b_delivery’11 is used as a case study. It is a
lightweight ICDD container that fits for demonstration purposes. Using the
abovementioned query languages, the container will be queried for available
sources, their name and filetype. Secondly, the container will be searched for
links between the documents on a sub-document level. We will compare the
results of different query types.

3.1 Querying with HyperGraphQL

In order to set up a query engine with HyperGraphQL, some pre-processing
steps need to be carried out first:

1. config.json: First, a configuration file is made, containing the information
to be used by the HyperGraphQL engine (e.g. the schema that is used and
the services that are queried).

2. Schema conversion: The next step is the conversion of the ontologies that
are present in the ICDD folder into a HyperGraphQL schema. Each type in
the schema refers to the service that it needs to query.

3. Data preparation: It has been mentioned that types in a HyperGraphQL
schema are working on only one service, while a linked ICDD container
essentially contains at least two describing graphs: the index.rdf graph and
the links.rdf (or content.rdf). Both need to be parsed into a single graph
that can be used as one service in the config.json file, and to which the types
in the schema can refer.

10 https://github.com/JWerbrouck/Ontology2GraphQL
11 http://www.iso-icdd.org/examples/part1/usecase_1b_delivery.icdd

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

28

4. Service setup: Quering with HyperGraphQL requires the setup of an in-
termediary service. This HyperGraphQL engine is bound to the schema, so
if the schema alters, the engine needs to be restarted. After the startup of
the service, a graphical interface (GraphiQL) for querying the graph is set
up, which can be used for performing GraphQL queries.

Fig. 3. Querying the (Internal)Documents in an ICDD container

The first query is aimed at finding all documents that are linked in the con-
tainer (Fig. 3). A first issue is that only subclasses of ct:Document are present
in the folder. As mentioned, subclass inference is not implemented, so the differ-
ent types of documents need to be queried explicitly. The second query searches
for links between identifiers within documents (Fig. 4). However, the schema
had to be adapted manually, for the range of ls:hasDocument to focus on
InternalDocument instead of its superclass ct:Document. This is possible be-
cause we knew before that there were no other types of documents in the ICDD
sample datasets. In a real world situation, this will not always be the case,
which makes it quite a large disadvantage. The reason that it was possible
in the first scenario to query withouth adapting the scheme, is because there,
InternalDocument was queried as a GraphQL type, not as a field.

3.2 Querying with GraphQL-LD

For querying with GraphQL-LD, only a JSON-LD context is needed (e.g. Listing
1.3). Since we focus on querying, we only use the GraphQL-to-SPARQL module
and perform the resulting SPARQL query on a triple store (Fuseki) that contains
both the index.rdf and links.rdf graphs. The same query looks slightly different
when compared to the query performed in section 3.1, due to the difference

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

29

Fig. 4. Querying the links between (internal) documents in an ICDD container

in processing. Because GraphQL-LD is predicate-oriented, a workaround has to
be made to query for an object with given class (Listing 1.4). Furthermore,
the variables of the query are automatically set to the fields that are queried,
ignoring the GraphQL classes. Because there is no field ‘uri’ (cf. the ‘_id’ field
that is assigned to every type in HyperGraphQL), it is therefore difficult to get
the URI of a queried type.

The same first query from Section 3.1 (Fig. 3) can be written in GraphQL-LD
as depicted in Listing 1.4. This can be queried against any SPARQL endpoint,
after conversion by the GraphQL-to-SPARQL module. This yields the SPARQL
query that is shown in Listing 1.5.

{
" InternalDocument " :

" http ://www. i so−i cdd . org / [. . .] / Container#InternalDocument " ,
" f i l e t y p e " : " http ://www. i so−i cdd . org / [. . .] / Container#f i l e t y p e " ,
" f i l ename " : " http ://www. i so−i cdd . org / [. . .] / Container#f i l ename " ,
"a " : " http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type"
}

Listing 1.3. JSON-LD context for querying with GraphQL-LD

{
a (_: InternalDocument) {

f i l e t y p e
f i l ename

}
}

Listing 1.4. GraphQL-LD query no. 1

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

30

SELECT ? f i l e t y p e ? f i l ename WHERE {
?b1 a ct : InternalDocument ;

c t : f i l e t y p e ? f i l e t y p e ;
c t : f i l ename ? f i l ename .

}

Listing 1.5. SPARQL translation of GraphQL query no. 1

Listing 1.6 shows the second query (Fig. 4), which is translated into SPARQL in
Listing 1.7. Note that, in this SPARQL translation, only the document and the
id were included as variables. A workaround for this could be to simply query for
all variables, by either replacing them with an asterisk manually or by means of
a code snippet. To avoid having identical variables, a concatenation takes place
to join the variable name with the previous ‘branches’ in the GraphQL query. A
naming of the fields is not required, but can be added for more clarity.

{a (_: Link) {
l inkElement : hasLinkElement {

document : hasDocument
idUr i : h a s I d e n t i f i e r {

id : i d e n t i f i e r
}

}
}

}

Listing 1.6. GraphQL-LD query no. 2

SELECT ? linkElement_document ? l inkElement_idUri_id
WHERE {

?b1 rd f : type l s : Link ;
l s : hasLinkElement ? l inkElement .

? l inkElement l s : hasDocument ? linkElement_document ;
l s : h a s I d e n t i f i e r ? l inkElement_idUri .

? l inkElement_idUri l s : i d e n t i f i e r ? l inkElement_idUri_id .
}

Listing 1.7. SPARQL translation of GraphQL query no. 2

3.3 Querying with SPARQL

Finally, the ICDD container is queried using SPARQL. Here, the two queries
can be combined into one (1.8). However, in this case the container only has
one ct:ContainerDescription, which is why this variable is somewhat obsolete
and therefore not listed in the results. Furthermore, the query searches for the
links, the name and extension of the documents they refer to and the identifiers
at sub-document level.

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

31

PREFIX ct : <http ://www. i so−i cdd . org / part1 /2019/ Container#>
PREFIX l s : <http ://www. i so−i cdd . org / part1 /2019/ Linkset#>

SELECT ? l i n k ?name ? type ? id
WHERE {

? index a ct : Conta inerDesc r ip t i on ;
c t : containsDocument ?doc .

?doc ct : f i l ename ?name ;
ct : f i l e t y p e ? type .

? l i n k a l s : Link ;
l s : hasLinkElement ?LinkElement .

?LinkElement l s : hasDocument ?doc ;
l s : h a s I d e n t i f i e r ? id_guid .

? id_guid l s : i d e n t i f i e r ? id .
}

Listing 1.8. SPARQL translation of GraphQL query no. 2

As was the case in section 3.2, this query can be performed against all SPARQL
endpoints, which makes it possible to enable reasoning engines. The results are
depicted in Table 2. Three links are present in this ICDD container, two of which
connect the IDs within two documents, one of them relates to three IDs.

Table 2. Results of SPARQL query for links between documents on sub-document
(identifier) level

link name type id
links:...b79d Viaduct_48D-100.ifc ifc 2ptPWWWHjCCfWE1B3yaT2A
links:...b79d InspectionReport.xlsx xlsx 3
links:...b79d damagedConcrete.jpg jpg 3
links:...2423 Viaduct_48D-100.ifc ifc 1D_dzaxZf4_QcddQY3uvjg
links:...2423 InspectionReport.xlsx xlsx 2
links:...e6f09 Viaduct_48D-100.ifc ifc 20dnvrgv16XurcDlSZ1qI3
links:...e6f09 InspectionReport.xlsx xlsx 4

4 Conclusion

In this paper, three query syntaxes were discussed to retrieve data from an
RDF dataset. The first two rely on the GraphQL syntax, but extend it towards
linked data. While HyperGraphQL uses a schema that is fully compliant with
the GraphQL specifications, GraphQL-LD translates the syntax of a GraphQL
query into SPARQL ‘under-the-hood’. Another way for easily querying Linked
Data, LDflex, was not included in the discussion because of its dependency on
Javascript.

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

32

ICDD presents an interesting way of interlinking document-based informa-
tion with RDF information, providing a way to use RDF to semantically an-
notate information that is nevertheless stored in a non-Linked Data way. ICDD
datasets have a clear structure and are not overly complex, making them suitable
to serve as use cases for testing the abovementioned query syntaxes. As ICDD is
intended for use within the industry, being able to query it in a simple manner
could certainly lower the threshold for developers to use Linked Data in their
applications.

It is clear that SPARQL is the most expressive of these three languages.
SPARQL also inherently uses context, while for the other two, a context needs
to be provided. This makes it difficult to include external data sets on the web,
because the statements used in such datasets might not be explicitly available in
the context used for querying. However, for simple queries on a known dataset
(such as an ICDD container), GraphQL-based queries find their worthiness in
the fact that they hide the verbosity of SPARQL behind the elegant and concise
syntax of GraphQL. When a fixed dataset is present, such as an ICDD container
that contains only internal documents, HyperGraphQL offers a clean way of
querying, also due to its ‘introspection’ feature that helps querying the correct
schema definitions. On the other hand, as indicated in [16], the use of GraphQL-
LD is preferable in situations in which several endpoints need to be queried, with
flexible context adaptation. In other words, when decentralised applications are
developed to query distributed datasets. The ICDD ontologies may be of use
to link such datasets, owned by different project stakeholders, without the need
of creating an ICDD dump file. Querying with HyperGraphQL is somewhat
limited in such scenario, since it is more cumbersome to set up and less flexible
to incorporate changing query situations. Querying distributed datasets requires
a more ‘open world’ approach that is difficult to implement in HyperGraphQL
schemas. It can be argued that the use of fixed HyperGraphQL schemas can
be of use to allow fine-grained access to certain building data, based on the
role of the person that queries the data, since types that are not present in
the schema cannot be queried. However, further research needs to be carried
out to gain insight in this potential benefit. Lastly, both GraphQL solutions are
essentially only query languages. There are currently no translations to SPARQL
CONSTRUCT, or respectively GraphQL mutations. If, in the future, one of these
would provide functionality to also update the data using GraphQL syntax, this
would open a lot of options for development and querying of basic Linked Data-
based services, all behind a clean GraphQL facade.

5 Acknowledgements

The authors would like to acknowledge the support by both the Special Re-
search Fund (BOF) from Ghent University and the BIM4REN project, which
has received funding from the European Union’s Horizon 2020 Research and
Innovation Program under grant agreement No 820773.

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

33

References

1. Beetz, J., Van Leeuwen, J., De Vries, B.: Ifcowl: A case of transforming express
schemas into ontologies. Ai Edam 23(1), 89–101 (2009)

2. Beetz, J., Van Leeuwen, J., De Vries, B.: An ontology web language notation of
the industry foundation classes. In: Proceedings of the 22nd CIB W78 Conference
on Information Technology in Construction. vol. 2006, p. 670. Technical University
of Dresden (2005)

3. Facebook Inc.: GraphQL, https://facebook.github.io/graphql/June2018/
4. Gürtler, M., Baumgärtel, K., Scherer, R.J.: Towards a workflow-driven multi-model

bim collaboration platform. In: Working Conference on Virtual Enterprises. pp.
235–242. Springer (2015)

5. Pauwels, P., Terkaj, W.: Express to owl for construction industry: Towards a rec-
ommendable and usable ifcowl ontology. Autom. Constr 63, 100–133 (2016)

6. Rasmussen, M., Pauwels, P., Lefrançois, M., Schneider, G., Hviid, C., Karlshøj, J.:
Recent changes in the building topology ontology. In: LDAC2017-5th Linked Data
in Architecture and Construction Workshop (2017)

7. Rasmussen, M.H., Pauwels, P., Hviid, C.A., Karlshøj, J.: Proposing a central aec
ontology that allows for domain specific extensions. In: 2017 Lean and Computing
in Construction Congress (2017)

8. Schapke, S.E., Katranuschkov, P., Scherer, R.J.: Towards ontology-based manage-
ment of distributed multi-model project spaces. In: Proceedings of the CIB-W78
conference on IT in construction (2010)

9. Semantic Integration Ltd.: HyperGraphQL, https://www.hypergraphql.org/
10. Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.: Comunica: a

modular sparql query engine for the web. In: International Semantic Web Confer-
ence. pp. 239–255. Springer (2018)

11. Taelman, R., Vander Sande, M., Verborgh, R.: GraphQL-LD: Linked Data Query-
ing with GraphQL. In: ISWC2018, the 17th International Semantic Web Confer-
ence (2018)

12. Taelman, R., Vander Sande, M., Verborgh, R.: Bridges between graphql and rdf.
In: W3C Workshop on Web Standardization for Graph Data. W3C (2019)

13. Törmä, S.: Semantic linking of building information models. In: 2013 IEEE Seventh
International Conference on Semantic Computing. pp. 412–419. IEEE (2013)

14. Verborgh, R.: Designing a linked data developer experience (2018)
15. Werbrouck, J., Pauwels, P., Beetz, J., van Berlo, L.: Towards a decentralised com-

mon data environment using linked building data within the solid ecosystem. In:
Proceedings of the 36th CIB W78 Conference on Information Technology in Con-
struction. CIB W78 (Under review)

16. Werbrouck, J., Senthilvel, M., Beetz, J., Bourreau, P., van Berlo, L.: Semantic
query languages for knowledge-based web services in a construction context. In:
26th International Workshop on Intelligent Computing in Engineering. EG-ICE
(Under review)

Proceedings of the 7th Linked Data in Architecture and Construction Workshop - LDAC2019

34

