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Abstract. When describing a real image using a mathematical model, the problem of model 
parameters identification is of importance. In this case the identification itself is easier to 
perform when a particular type of model is known. In other words, if there is a number of 
models characterized by different properties, then if there is a correspondence with the type of 
suitable images, then the model to be used can be determined in advance. Therefore, in this 
paper, we do not consider the criteria for model selection, but perform the identification of 
parameters for autoregressive models, including those with multiple roots of characteristic 
equations. This is due to the fact that the effectiveness of identification is verified by the 
images generated by this model. However, even using this approach where the model is 
known, one must first determine the order of the model. In this regard, on the basis of Yule-
Walker equations, an algorithm for determining the order of the model is investigated, and the 
optimal parameters of the model are also found. In this case the proposed algorithm can be 
used when processing real images.  

1.  Introduction 
Mathematical modeling is used in many areas of science and technology, including image processing. 
In particular, methods focused on the description of images using models of random fields (RF), allow 
the development of algorithms for parameter estimation, filtering, detection of anomalies in the 
background of images and analyze them for a large number of simulated images. 

There exist many images that are characterized by a smooth change in brightness [1,2]. Usually 
such images have a slowly decreasing correlation function (CF) in a certain given neighborhood. The 
first-order autoregressive (AR) image models [3,4] do not provide a strong correlation between pixels, 
since its CF decreases exponentially. Meanwhile, separable RFs that can be generated by one-
dimensional autoregression with multiple roots of characteristic equations [5-6] are known. An 
important feature of ARs with multiple roots is their considerable simplicity compared to arbitrary 
high-order ARs. Also doubly stochastic models are used to describe real images [7-10]. However, if 
the structure of the described image is not so complicated, then it is better to use simpler models. This 
is due to the fact that the computational complexity of a double-stochastic model is much higher than, 
for example, a model with multiple roots, for which the AR of any order can be described using a 
single parameter. 

At the same time, when describing images, for example, satellite images using mathematical 
models, it is necessary to identify parameters of the model. At the same time, the model should be 
selected in such a way that a compromise is found between its complexity and the similarity of the 
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simulated image with the real one. The paper discusses the solution of the problem of the parameters 
identification for AR models with multiple roots of characteristic equations, which, owing to the 
separability of the CF, can significantly simplify this task. It should be noted that the application of the 
parameter identification approach based on Yule-Walker equations to determining the order and 
correlation parameters of AR models with multiple roots has a scientific novelty. 

2.  Brief overview of the parameters identification methods for a random processes 
At present, the identification task for AR processes, the moving average (MA) and autoregression with 
moving average model (ARMA) by single-channel observations without noise is the most well-
studied. Especially many methods have been developed for estimating the parameters of such 
processes. The estimation methods are based either on the direct use of observations, or on the initial 
calculation of the sample statistical characteristics (autocorrelations, spectral densities) from these 
observations, and then using them to determine parameter estimates. The first group of methods 
includes the least squares method (LSM) for the AR process [10,11], the maximum likelihood method 
(ML) for the AR, MA, and ARMA processes, and various types and modifications of these methods 
[12-14]. The second group is the Yule-Walker method for the AR process [13], the Box and Jenkins 
correlation methods for the ARMA, MA [13] processes, the Lindberger method for the AR, MA, and 
ARMA processes [15], the Durbin method for the MA process [16] , the Cleveland inverse 
autocorrelation method for the ARMA process [17] and other methods [18]. In both groups, there are 
methods in which parameter estimates are calculated by linear algorithms by solving a certain system 
of linear equations for example, LSM and Yule-Walker method for the AR process, as well as 
methods that use nonlinear methods for calculating estimates, which are reduced to numerical 
minimization algorithms for a certain function of the parameters, for example, the ML method and the 
Lindberger method for the APMA processes. The methods for determining the class of processes that 
can be AR, MA, and ARMA are much less developed [19]. In the work of Kitler and Whitehead [20], 
the problem of class determination is reduced to the problem of determining the order of the ARMA 
process. Therefore, the solution of the determination order and class of the model task is of interest. In 
the simplest case, such a task is reduced to a problem when it is necessary to determine its order using 
the selected model of AR. So optimal identification is very important for satellite image processing 
[21,22]. 

3.  Autoregressions with multiple roots of characteristic equations 
Using  AR models with multiple roots of characteristic equations, it is possible to obtain realizations 
of RFs that will be close in their properties to real images. In this case an important property of the 
generated RF will be its quasi-isotropy. The general formula for models of different multiplicities can 
be written as follows 
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When identifying parameters, let’s approximate the CF of the initial data by the most appropriate 
model. In order to obtain the CF models of arbitrary orders, it is necessary to use expressions for one-
dimensional CF of AR with multiple roots of characteristic equations [22] 
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Thus, for spatial AR equation with characteristic roots of multiplicities (m1,m2)  the expression for 
CF can be written as 
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However, in the case of a model with multiple roots it is possible to separately carry out the 
identification of parameters by row and column, using formula (5). 

4.  Identification of parameters based on theoretical values of correlation functions 
To solve the problem of identification, we will use AR models of arbitrary order 

,...2211 imimiii xxxx ξρρρ ++++= −−−   Mi ,...,2,1= ,       (8) 
where m is order of AR model.  

Choosing parameters mρρρ ,...,, 21  it is possible to get a Gaussian RF }{ ix , Mi ,...,2,1=  with a 
variety of correlation properties. In this case to write values of CF you can use the following 
expression 
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Substitution in (9) values k = 1, 2, … , m leads to the well-known Yule-Walker system of 
equations, which, for example, for second-order systems takes the form 
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The solution of this system allows you to find the coefficients mρρρ ,...,, 21  of equation (8) 
based on predetermined or estimated values of CF Rx(1), Rx(2), …, Rx(m). 

We will perform parameter identification for models with multiple roots of characteristic equations 
of 1-4th orders. In this case the order can be identified if we take into account only the coefficients that 
make some contribution to the model. Table 1 presents the results of identification of the correlation 
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parameters for the values of CF of AR with multiple roots. By rows, the actual multiplicity is 
presented, by columns — estimated parameters are presented. We assume 80.=ρ  for models of all 
orders. In the left column – the values found, in the right column - the real values. 

Table 1. Identification of parameters based on the theoretical values of CF 
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Analysis of table 1 shows that the values of the correlation coefficients are estimated the more 
accurately, the higher the multiplicity is. If the estimated multiplicity exceeds the real value, then the 
additional coefficients are either 0 or very close to it. Thus, the process of the model order 
identification can be carried out first for some large multiplicity. If the resulting coefficients do not 
have zero coefficients, then the calculation should be carried out at a higher multiplicity until we get 
zero coefficients. If there are zero coefficients, the order corresponds to the number of the last 
significant coefficient. 

A similar relationship between correlation coefficients and CF values can also be obtained for the 
two-dimensional case, i.e. images. The relation for CF values corresponding to expression (9) for the 
three-point model, is written as  

.0,0),1,1()1,(),1(),( 2121112101211021 >>−−+−+−= kkkkRkkRkkRkkR ρρρ      (13) 
It is easy to verify that solving the two-dimensional Yule-Walker system of equations (13) for the 

Habibi model CF will give correlation coefficients identical to the coefficients of the first-order two-
dimensional AR model. To increase the order of the AR, as in the one-dimensional case it is necessary 
to increase the number of correlation coefficients. In this case, the RF model can be written as follows 
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where }{ , jix  is RF implementation or simulated image; klρ  are correlation coefficients for elements 
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The number of components of the model, taking into account the random increment will be equal 
to )()( 11 +×+ ji mm . Using formulas (9) and (13), we can write the relation for calculating the CF 
values 
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The expression (15) can also be used for the case of non-separable CFs if the parameters of an 
arbitrary AR RF are identified and the order is a priori unknown. 

5.  Parameter identification on the basis of real images CF 
Let us identify the parameters of the model based on the proximity of the CF model and the given 
data. In the first case, we will consider the AR with a separable CF and separately calculate the 
coefficients for the row and column. In the second case, we use equations based on the expression 
(15). 

Let there be a real image represented as 
21 11 MjMijiI ,...,,,...,),,( ∈∈ . Then its CF can be 

expressed as follows 
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where Im  is average brightness over the entire image; 2
Iσ  is brightness variance calculated over the 

entire image. 
Figure 1a and Figure 1b show the image to be investigated and its CF, respectively. Identification is 

performed for the 4th order AR model. 
- for RF having separable CF the results are as follows:

;.;.;.;. 082036403900981 40302010 −==−== ρρρρ  03801110004708280 04030201 .;.;.;. ==== ρρρρ ; 
..)ˆ( 38702 =−= RRε  

- for RF having non-separable CF the results are as follows:
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          a)                      b) 

Figure 1. The image (a) for which the adjustment of the parameters is carried out and its CF (b). 

Analysis of the obtained values of the error variances shows that the use of the model with an non-
separable CF provides a greater proximity between the modeled and the real CF. This is explained by 
the fact that for this model 24 correlation parameters were calculated, while for a model with a 
separable CF only 8 parameters. At the same time, a sufficient proximity of the CF is provided, 
especially in the neighborhood of zero. Therefore, it is advisable to use such models to reduce 
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computational costs. Figure 2 shows the CF cross sections for the original image (presented by solid 
line), as well as for the RF with separable CF (presented by dash-dotted line) and the RF with non-
separable CF (presented by dashed line). 

 
Figure 2. CF cross sections of the original image and identifiable models. 

Analysis of the presented curves shows that as k increases the discrepancy between the real and 
simulated CF also increases. It is possible to achieve greater proximity by increasing the order of the 
AR, but this leads to higher computational costs. Similar research was conducted with a sample of 100 
images. Analysis of the results shows that the use of non-separable CF models provides the proximity 
of CF to 10-15 times more than the use of separable CF models in 85% of cases. However, in 15% of 
cases separable models were successfully used to describe the real image, which made it possible to 
significantly reduce computational costs of image processing. 

6.  One dimensional example of calculating parameters 
However, if a model with multiple roots is used, it is sufficient to calculate only the first correlation 
coefficient, then calculate the correlation parameter using the first correlation coefficient and use 
correlation parameter to find the remaining correlation coefficients according to the expression (3). 

For example, if 6.31 =ρ   and N=4 then it is easy to calculate parameter of the AR with multiple 
roots of characteristic equations from the following equation 
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After that we find the second, third and fourth correlation coefficients 
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So it is quite a simple task to perform identification of parameters in this case.  

7.  Conclusion 
In this paper a brief overview of the methods used to identify the parameters of the AR processes is 
presented. Models with multiple roots and a method for determining the order of the model based on 
the Yule-Walker equations are considered. It is shown that the proposed method enables to determine 
the order of the model for simulated images with sufficient accuracy. A comparative analysis of the 
identification of the parameters of models with a separable and non-separable CF of the real image is 
performed. The analysis shows that models with a non-separable CF require more computational costs 
at the same order of a model, however, they provide greater proximity of the CF in comparison with 
separable CF models. The identification results may be used to describe real satellite images and for 
the processing of such images. 
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