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Abstract. We propose a new adaptive multidimensional signal interpolator for differential 

compression tasks. To increase the efficiency of interpolation, we optimize its parameters 

space by the minimum absolute interpolation error criterion. To reduce the complexity of 

interpolation optimization, we reduce the dimension of its parameter range. The 

correspondence between signal samples in a local neighbourhood is parameterized. Besides, 

we compare several methods for such parameterization. The developed adaptive interpolator is 

embedded in the differential compression method. Computational experiments on real 

multidimensional signals confirm that the use of the proposed interpolator can increase the 

compression ratio 

1. Introduction

There are many interpolation [1, 2] methods have been already developed, and they continue to 
evolve. It is worth mentioning techniques based on context modeling [3], least mean squares [4], 
Kronecker bases [5], matrix pencil method [6], compressed sensing [7], etc. However, these methods 
are recourse consuming and computationally complex, therefore are not suitable for differential 
compression algorithms.

Differential compression of multidimensional signals, also called DPCM (differential pulse-code 

modulation [8 - 11] ), is based on interpolation (prediction) of signal samples based on already 

processed samples and further interpolation error encoding (post-interpolation residues encoding). A 

high correlation usually characterizes real digital signals, so a transition to a differential representation 

entails a significant non-uniformity of the probability distribution of post-interpolation residues, 

which, in turn, leads to a decrease [12 - 14] of compressed data entropy, and a compression ratio 

increase. 

In his paper, we propose a new adaptive DPCM interpolator of multidimensional signals [2, 15 – 

16], for which three different ways of parameterization of already processed samples correspondence 

are proposed. The complexity of optimizing the parameters of the proposed interpolator is decreased 

by reducing the dimension of its parameters space. An experimental study of the proposed adaptive 

interpolator on a test set of multidimensional signals of the SpecTIR spectrometer was made; its 

results demonstrate that the proposed interpolation method outperforms the most common one. 
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The article is structured as follows: first, a general method of DPCM is given. After which the 

proposed interpolator is described:  the general scheme for constructing adaptive interpolators, the 

procedure for reducing the parameter space and the interpolation procedure. After that, the results of 

an experimental study are presented. 

2. Multidimensional signals differential compression

During differential compression of a multidimensional signal, the samples are processed in the order

of some scan, which generalizes the line-by-line scan of the two-dimensional case. Let  C x  be the

multidimensional signal and x  be the vector of its arguments. Every sample of  C x  id processed in

the following way: 

1. Interpolation.

The interpolated value  P x  of the current sample is calculated using the already processed

(compressed and decompressed) samples   kC x : 

   ,( ) ˆ
kP xx С P (1)

via interpolation function P. 

2. Calculation of the differential signal f (the difference between the interpolated and the real

value): 

     Cf x x P x  . (2) 

where  f x  - is the differential signal.

3. Quantization of differential signal:

    qf x Q f x , (3) 

where ( )qf x - quantized difference, Q - quantization function. 

In this work, we used a uniform quantization scale: 

  max

max

( )
( ) ( )

2 1
q

f x
f x sign f x

 
  

  
, (4) 

where
max – preset maximum error (compression algorithm parameter), [..] means an integral part of

the number. This quantization scale controls the maximum error between the initial  C x  and

decompressed  Ĉ x  signals:

   max
ˆmax

x
C x С x  

. (5) 

4. Reconstruction of current value:

      max
ˆ 2 1qC x P x f x    . (6) 

i.e. calculation of decompressed value  Ĉ x . This value will be used in the compression stage during

the interpolation (3) of the next samples. This feedback is necessary to ensure that the interpolators

work identically during compression and decompression.

5. Encoding of the quantized differential signal. In this work, Huffman encoder was used [8 - 10].

3. Multidimensional signals adaptive interpolation

3.1. Approach to adaptive interpolator construction 

We have developed proposed interpolator according to the following general structure of adaptive 

interpolation of multidimensional signals. It generalizes two-dimensional interpolation algorithms 

described in [2, 8].  
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Let us consider a current sample ( )C x  which is to be interpolated on the basis of neighbor ones

  kC x . Let     i kC xP – be the set of simple and fast interpolation functions. Therefore, for every

sample a set of interpolated values can be calculated: 

    ) ( i i kP x C x P . (7) 

Resulting interpolated value is chosen via the parameterized decision rule R: 

      lim  , , ,iP x C x i R х  (8) 

which uses the vector of  local features  х  calculated on the basis of neighbor samples   kC x . The 

decision rule is also dependent on the parameter lim , which is calculated during the optimization of 

some criterion (for example, interpolation error). The certain form of the criterion is determined by the 

method application area. 

Averaging over the nearest processed samples interpolators are usually used [2] to reduce the 

computational complexity in differential compression:  

   
1

1 ˆ  
N

k

i

P x C x
N 

  , (9) 

where  ˆ
kC x – are the neighbor samples, N – is the number of neighbor samples.  

The interpolator of this type work quite accurately on relatively smooth signal parts due to 

averaging over noised samples, but it has a large error on the contours (extended brightness 

differences). When interpolating contour readings, interpolators based on interpolation “along” the 

contour work more accurately. An example of  these interpolators for the two-dimensional case is, for 

example, Graham interpolator [2, 8]. 

During Graham interpolation, the interpolated value is equal to the neighbor sample value which 

lies in the direction of the contour. However, this interpolation is less accurate on smooth parts of the 

signal. 

In this paper, we propose an adaptive interpolator that combines the advantages of both described 

approaches. Proposed interpolator automatically switches between averaging interpolation and 

interpolation “along the contour” depending on the presence and intensity of the contour in the local 

neighborhood of each signal sample.  

Let us describe in more detail interpolation function (7) and decision rule (8). Let L be the number 

of possible contour directions (usually, it is greater than or equal to signal dimension). Let 

  : 0i x i L   be the set of averaged difference moduli    ˆ ˆ
tC x C x  between already processed 

samples  ˆ
kC x in every direction possible (this set is computed in every signal sample).  Difference

values  i
x determine the presence and intensity of the contour in the current signal sample local

neighbourhood. The least of these differences might be used to determine the direction of the contour 

if one passes through the processed sample. To decide whether there is a contour in a signal and what 

direction it goes in, several threshold values 
lim

i
 are used. Thresholds are compared with local

features values  х . If there are no contours detected, averaging interpolation (9) is used: 

              lim

1

1 1 ˆ , argmin & , 0,
N

k i i c

k

P x P x C x if хi x i N
N 



        . (10) 

Otherwise, the neighbouring sample, located in the differences minimum direction is used as an 

interpolating value (interpolation “along the contour” is performed):  

              2 limˆ , argmin & , 0,j i i cP хx P x C x if i x i N


        . (11)
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Therefore, to calculate the best 
lim

i
 values, we have to perform the optimization in c

N -

dimensional parameter space. 

The application task determines the number of dimensions 
c

N of parameter space
lim

i
 . For

differential compression, the complexity of the task is determined not only by the signal dimension but 

also by the number of contour directions taken into account. For example, for differential compression 

of two-dimensional signals (images), 2
c

N  if we consider horizontal and vertical contours 4
c

N  if 

we consider horizontal, vertical and diagonal contours. Given the limitations on computational 

complexity, even for 2
c

N  searching the 
lim

i
 parameters can be an overly time-consuming task.

3.2.  Interpolator parameter space dimension reduction  

In this paper, we propose to reduce the parameter space dimension to lower the computational 

complexity of finding these parameters. To do that we propose to use decision rules based on the 

relationships between  i
x  instead of their absolute values. If there are no contours in a sample’s

neighborhood, differences 
i

 will have close values. If there is a distinct contour, the desired
j

 will

be not only the least but also distant from the other ones. Figure 1 shows described situations 

pictorially. 


j


 

 
Nc-2 j


... ...

(а) ( )b

Figure 1.  Differences distribution during the interpolation: (a) – a contour passes through the 

processed sample, (b) – there are no contours in the sample’s neigbourhood. 

We propose three new contour features based on described statements: 

               I
:

, argmin , argmin ,r j i i
i i i j

x x x j x x r x x


        (12) 

 
 
 

   
1

II

0

1
, ,

CN
j

k
C k

x
x x x

Nx






    


 (13) 

 
   

   

 

1 0

III 2

1

0

,
1

1

where is the element of the difference ordered series.

C

i

V V

N
V V
i i

C i

V

x x
x

x x
N

x







 
 

 


 

 (14) 

During the interpolation procedure, proposed contour features are compared with a single threshold 

value
lim . Thus, by reducing the parameter space dimension, it is possible to reduce the multi-

parameter optimization problem to a single-parameter one, where the only parameter is
lim . To

calculate this parameter, an automatic optimization procedure is used, similar to one described in [16]. 

3.3. Adaptive interpolation algorithm for differential compression 

We considered a three-dimensional signal during experimental research    , ,C x C x y z , which is

processed “layer-wise” with line-by-line scan in each layer. We have considered the following set of 

differences, each difference in accordance with a contour direction: 
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       

    

1
ˆ ˆ ˆ ˆ, 1, 1, 1, 1, 1, 2, 1,

ˆ ˆ1, 1, 2, 1, 3

C x y z C x y z C x y z C x y z

C x y z C x y z

              

     

(20) 

       

    

2 |
ˆ ˆ ˆ ˆ1, 1, 1, 2, 1, , 1, 1,

ˆ ˆ1, 1, 1, , 3

C x y z C x y z C x y z C x y z

C x y z C x y z

              

    

(21) 

            3 /
ˆ ˆ ˆ ˆ ˆ ˆ, 1, 1, , 1, , 2, 1, 1, 1, 2, , 3,C x y z C x y z C x y z C x y z C x y z C x y z                 (22) 

            4 \
ˆ ˆ ˆ ˆ ˆ ˆ, 1, 1, 2, 1, , 2, 1, 1, 1, , 2, 3,C x y z C x y z C x y z C x y z C x y z C x y z                  (23) 

       

        

5
ˆ ˆ ˆ ˆC x 1, y,z C x 1, y,z 1 C x, y 1,z C x, y 1,z 1

ˆ ˆ ˆ ˆC x 1, y 1,z C x 1, y 1,z 1 C x 1, y 1,z C x 1, y 1,z 1 4

             

             

(24) 

Figure 2 demonstrates the discussed differences. 

Figure 2. Discrete differences for five contour directions (bold lines) during sample «○» interpolation 

with the use of «×» samples as reference. 

As one may notice 
 ,

| ,
/ ,

\ are the averaged differences of  vertical, horizontal  and diagonal

directions inside the current layer  , ,C x y z , and
 is the “cross-layer” averaged difference, i.e., the

difference between samples from layer  , ,C x y z  and layer  1, ,C x y z .

In this case, contour features (12- 14) can be described in the following way: 

     

           

I

:

, , , , , , ,

, , argmin , , , , , argmin , , , , 1,5

r j

i i
i i i j

x y z x y z x y z

j x y z x y z r x y z x y z i j


   

    
(25) 

 
 

 
   

5

II

1

, , 1
, , , , , , , ,

, , 5

j

k

k

x y z
x y z x y z x y z

x y z 


    


 (26) 

 
   

   

1 0

III 4

1

1

, , , ,
, , ,

1
, , , ,

4

V V

V V
i i

i

x y z x y z
x y z

x y z x y z



 
 

 
(27) 

In this work, we have compared the adaptive interpolator with proposed contour features (25 - 27) 

with an averaging one (9). The averaging interpolator for this case can be described in the following 

way: 

   
8

1

, , , ,
1 ˆ
8

k

i

P Cx y z x y z


  . (28)
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4. Experimental study of  the proposed adaptive interpolator

A set of 6  hyper-spectral Earth remote sensing signals were used during the experimental research.

The set was obtained via SpecTIR hyper-spectrometer. Signals are 160×200×356 with 16-bit color

depth. Figure 3 demonstrates several channels of test signals.

Figure 3. Several contrasted signal channels of the test set. 

Figure 4. Dependence of decompressed signal RMS on compression coefficient with the use of the 

adaptive (with different contour features) and averaging interpolators. 

Figure 5. Dependence of the averaged over the test set compression ratio on the absolute error. 

Experimental research was held in the following way - each test signal was compressed and then 

decompressed with a different maximum error value after that root mean square error (RMS) was 
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calculated for the decompressed signal. Results were averaged over all test set. Figure 4-7 

demonstrates the results of the experimental study. 

Figure 6. Dependence of the relative gain in archive size from the averaging interpolator on the 

absolute error.  

Figure 7. Averaged over the test set time of processing of one test image. 

As one may notice, proposed adaptive interpolator significantly reduces decompressed signal RMS. 

for example, it gives 11 times less RMS then averaging interpolator for compression coefficient 5. The 

least RMS is obtained with the use of the contour feature that uses the difference between two 

minimum values (see 25 and its general form 12). One may notice, that the use of feature I (12, 25) 

results in faster image processing with the same performance (in terms of RMS and compression ratio) 

as features II (13, 26) and III (14, 27). 

5. Conclusions

In this paper, new adaptive interpolator for differential compression tasks was proposed. It uses the

contour features to switch between interpolation methods in every processed signal sample. The

parameter space dimension reduction procedure was performed to lower the computational complexity

of the proposed interpolator. Three methods for the contour feature calculation were proposed.

During the experimental research, every setup of the proposed interpolator outperformed the 

averaging one.  The least RMS is obtained with the use of contour feature that uses the difference 

between two minimum values. 
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