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Abstract. In this paper, we consider the interpolation of multidimensional signals problem. We 

develop adaptive interpolators that select the most appropriate interpolating function at each 

signal point. Parameterized decision rule selects the interpolating function based on local 

features at each signal point. We optimize the adaptive interpolator in the parameter space of 

this decision rule. For solving this optimization problem, we reduce the dimension of the 

parametric space of the decision rule. Dimension reduction is based on the parameterization of 

the ratio between local differences at each signal point. Then we optimize the adaptive 

interpolator in parametric space of reduced dimension. Computational experiments to 

investigate the effectiveness of an adaptive interpolator are conducted using real-world 

multidimensional signals. The proposed adaptive interpolator used as a part of the hierarchical 

compression method showed a gain of up to 51% in the size of the archive file compared to the 

smoothing interpolator.  

1. Introduction 

Currently, the need to use multidimensional digital signals is becoming more acute [1]. It is primarily 

about such areas as remote sensing [2-3], processing of multispectral and hyperspectral signals [4], as 

well as video processing. 

Now we know a large number of interpolation and approximation algorithms for such signals [1-

16], and the high-performance requirements often do not allow us to use trivial linear, bilinear or 

bicubic interpolators [1]. In other words, there is a tendency to the more and more widespread use of 

more complex interpolation methods, such as the support vector method [5], locally optimal well-

adapted basis functions [6], approximation by multidimensional orthogonal polynomials [7], 

multidimensional approximation and interpolation [8] etc. 

However, the presence of a large number of well-developed solutions did not stop research in the 

development and modification of interpolation and approximation algorithms for multidimensional 

signals. The approximation based on Kronecker bases [9], splines [10], and tensors [11] continues to 

be improved. Artificial neural networks [7,12] are also increasingly used for interpolating signals. 

Even the well-known least squares method (OLS) continues to be modified [13] in recent years. In the 

foreign literature, special attention is paid to the sparse approximation method [14], which is the basis 

for the “compressed sensing” approach [15–16]. 
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All the above algorithms have a sufficiently high accuracy in solving the corresponding applied 

problems. However, these algorithms have high computational complexity. In this paper, we propose 

fast interpolation algorithms for multidimensional signals that are adaptive due to automatic switching 

between interpolating functions at each point of the signal. This adaptability makes it possible to 

ensure high interpolation accuracy with low computational complexity, due to the simplicity of the 

interpolating functions used. 

The proposed interpolators are parameterized. Therefore, we can optimize them according to 

various criteria, the choice of which is determined by the specifics of the applied problem being 

solved. Optimization of adaptive interpolators is carried out in the space of their parameters. The 

complexity of this optimization is substantial if resources are limited. In this paper, we propose an 

algorithm for reducing the complexity of optimization due to the dimension reduction of the 

interpolator parametric space. 

2. Adaptive interpolation of multidimensional signals 

Let  C x  be a multidimensional digital signal, and x  be the vector of arguments. Let an arbitrary 

count ( )C x  be necessary to interpolate using the nearest reference samples   ˆ
kC x . Let 

      ˆi

kC xP  be the set of interpolation functions used. Thus, for the current sample ( )C x  several 

interpolating values can be calculated: 

 
       ( )ˆ 

i

i kP x C x P
. (1) 

The parameterized decision rule R performs the choice of the interpolating value for each signal 

sample: 

 
        lim  , , ,

i
P x P x i R х  

 (2) 

Rule R uses a local feature vector  х , which is calculated based on the nearest reference samples 

  kC x . Let the decision rule be parameterized, i.e. depends on the parameter 
lim . The value of this 

parameter is determined by optimizing a specific criterion, which depends on the applied task. This 

criterion can be, for example, the criterion for minimizing the energy of post-interpolation residues: 

 
   

lim

lim  min
x

f x


  
,       f x C x P x  , (3) 

where  f x  are post-interpolation residues.  

The criterion for minimizing the energy of post-interpolation residues can be used, in particular, 

when solving the problem of matching [17-18] of heterogeneous signals that differ in resolution, 

number of components, etc. 

In this paper, we propose to use the criterion for minimizing the entropy [19] of post-interpolation 

residues. This criterion is more suitable for the problem of signal compression than the criterion 

considered above. When using the criterion for minimizing entropy, one should take into account that 

post-interpolation residues are quantized before statistical coding in many compression methods, for 

example, in differential [20-21] and hierarchical [22-23] compression methods. In this paper, the 

quantizer with a uniform [19] scale is used to calculate quantized post-interpolation residues  q x : 

 
         max max2 1q x f x sign f x       , (4) 

where  ..  means the selection of the integer part of the number, max  is the maximum error [20] when 

quantizing. 

Thus, when using the specified "entropy" optimization criterion for the interpolator, it is necessary 

to minimize the entropy H of the quantized post-interpolation residues  q x : 
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      
lim

1
lim lim lim

1

ln min
M

q q

q M

H N N


 

      ,      max
x

M C x , (5) 

where  lim
qN   is the number of quantized post-interpolation residues equal to q, and M is the 

maximum value of the original signal. 

3. Reduction of the parametric space dimension 

With significant constraints on computational complexity, interpolation algorithms are often used 

[1,4], which use “smoothing” (averaging) over some a set of nearest reference samples: 

 
   

1

1 ˆ  
N

k

k

P x C x
N 

 
, (6) 

where  ˆ
kC x  are the nearest reference samples, N is the number of these samples.  

The specific of the interpolator application determines the arrangement of these reference samples. 

This arrangement can be quite non-trivial (see below) for some tasks related, for example, to the use of 

some image compression methods. 

As mentioned above, the use of such simple interpolation algorithms is typical in situations where 

it is necessary to minimize the computational complexity. In particular, interpolators of this type are 

used in differential [20-21] and hierarchical [22-23] compression methods for multidimensional 

signals. 

The “smoothing” interpolation algorithm is sufficiently accurate on smoothly varying signal 

regions since averaging reduces noise. However, the “smoothing” interpolator is always characterized 

by an increase in the interpolation error at the boundaries of the indicated smoothly varying regions 

(i.e., at the boundaries). To interpolate such boundaries, we can use algorithms that use the so-called 

interpolation "along the border". For a two-dimensional signal, in particular, Graham's nonlinear 

interpolation algorithm [20] works in this way. 

When using this algorithm, the Interpolated value is equal to the reference signal sample to which 

the local boundary is directed. However, this algorithm, for obvious reasons, has less accuracy on 

smoothly varying parts of the signal. 

In this article, we propose an adaptive parameterized interpolation algorithm that combines the 

advantages of both the described approaches: "smoothing" approach and "boundary" approach. The 

proposed interpolation algorithm is based on the approach described in Section 2. The proposed 

algorithm automatically switches between “smoothing” and “boundary” interpolators, depending on 

how sharp the boundary is in the local neighborhood of the processed sample. 

Next, we describe the proposed adaptive interpolator. We also specify the interpolating functions 

(1) and decision rule (2). Denote by Nc the number of boundary directions taken into account. Let 

  : 0i cx i N    be the set of averaged absolute values of differences between the reference 

samples  ˆ
kC x  in each of the directions under consideration: 

 
     ˆ ˆ

i tC xx C x  
 (7) 

where t and  are the indices of the reference samples. 

The differences  i x  determine the presence and intensity of the boundary in the local 

neighborhood of the current signal sample. We can use several thresholds 
lim
i  to decide on the 

presence and direction of the boundary. We compare the described differences i  with these threshold 

values
lim
i . If there is no boundary in the neighborhood of the current signal sample, then we use a 

“smoothing” interpolating function of the form (6): 
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         1 lim

1

1 ˆ , , 0,
N

k i i c

k

P x P x C x if i N
N 

     
. (8) 

If there is a boundary in the local neighborhood, then for interpolation we use the average value 

( )jC x of the two nearest reference samples located in the direction of the local boundary: 

 
         lim2

, , 0,j i i cP x P x C x if i N     
. (9) 

Thus, we need to solve an optimization problem in a cN -dimensional parametric space to find the 

best thresholds
lim
i . 

The application determines the dimension cN  of the parameter space
lim
i . As we show below, in 

the problem of hierarchical compression [22-23] 2cN   for a two-dimensional signal, 4cN   for a 

three-dimensional signal (in the simplest case), and then cN  grows rapidly with increasing signal 

dimension. However, the search for parameters can be an overly time-consuming task during 

compression even when 2cN  . 

In this paper, we propose to reduce the dimension of the parameter space 
lim
i  to reduce the 

computational complexity of finding these parameters. For this, we propose to use not the absolute 

values of the differences i , but their ratio during interpolation. If there is no boundary (or the 

boundary is weak) in the neighborhood of the current sample, all differences have close values. If 

there is a clear boundary in this neighborhood, then the smallest difference j  corresponds to the 

direction of this boundary: 

 
    argmin i

i
j x x 

.  

Moreover, if there is a boundary in the neighborhood, this difference is significantly different from 

all other differences, including the nearest difference r : 

 
    

:
argmin i

i i j
r x x


 

.  

Based on this reasoning, in this article the feature of the boundary direction is defined as the 

difference between the two smallest differences i : 

 
     r jx x x   

. (10) 

When interpolating each sample, the feature  x  is compared with a threshold lim . If the feature

 x  is small enough (less than the threshold lim ), then it is considered that there is no boundary in 

the neighborhood of the current sample. Therefore, a “smoothing” interpolation of the form (8) is 

used: 

 

         1 lim

1

1 ˆ ,
N

k

k

P x P x C x if x
N 

    
. (11) 

The difference from (8) is that now this interpolation is one-parameter. If the feature  x  is larger 

than the threshold lim , then interpolation of the form (9) “along the boundary” is performed: 

 
            lim

i

2 ˆ , argmin , .j
i

P x P x C x j if x      
 (12) 

Thus, by reducing the dimension of the parameter space, we reduce the multiparameter 

optimization problem to a one-parameter one, in which the only parameter is lim . An automatic 

optimization procedure similar to [23] is used to calculate this parameter. 
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4. Multidimensional adaptive interpolator in the problem of hierarchical compression 

The proposed multidimensional adaptive interpolator can be used in various signal processing tasks. In 

particular, in this paper, we consider the use of this interpolator in the problem of compression. As an 

example of the compression method, we consider the hierarchical compression method [22-23]. 

 This method uses a unique hierarchical non-redundant representation (see Figures 1-2) of the 

original multidimensional signal   C xC  as a set of L scale levels lC : 

 

1

0

L

l

l





C C

,      :l l lC x C x x I  C , (17) 

where Il is the set of sample indices of the corresponding scale level lX : 

 
 1

1 2L
LI x
 

, 
   12 \ 2 , 0l l

lI x x l L  
. (18) 

Thus, the most resampled scale level 1LC  is a “grid” of signal samples with step of  2
(L – 1)

, and all 

other scale levels with the numbers l = (L-1),(L-2),..,1,0 are grids of signal samples with the step of 2
l
, 

of which samples are removed with the step of 2
l+1

. 

With hierarchical compression, the scale levels of the signal are compressed sequentially, from the 

most resampled level 1LC  to the least resampled level 0C . In this case, samples of more resampled 

levels are used for interpolation of samples of less resampled levels. 

 

 

 

Figure 1. Hierarchical representation of a 

two-dimensional signal by four scale levels. 

 Figure 2. Level numbers in the hierarchical 

representation of the signal (the level 

number is zero in the empty cells). 

 

Most often, to reduce computational complexity with hierarchical compression, a smoothing 

interpolator of the form (6) is used. In the three-dimensional case, this interpolator can be written as: 

 

   
1 1 1

(1)
1

0 0 0

1
2 1,2 1,2 1 , ,

8
l l

m n k

P m n k C m m n n k k
    

        
. (19) 

Differences i  (7) in this case take the form: 

 
     1 1

(0) 2 1,2 1,2 1 1, 1, 1 , ,l ll m n k C m n k C m n k       
,  (20) 

 
     1 1

(1) 2 1,2 1,2 1 , 1, 1 1, ,l l lm n k C m n k C m n k       
, (21) 

 
     1 1

(2) 2 1,2 1,2 1 , , 1 1, 1,l ll m n k C m n k C m n k        
,  (22) 

 
     1 1

(3) 2 1,2 1,2 1 1, , 1 , 1,l l lm n k C m n k C m n k        
. (23) 

Thus, the adaptive three-dimensional interpolator allows us to automatically switch between 

smoothing interpolation (19) and interpolation along the boundary of one of the four directions shown 

in Fig. 3. In other words, at each point of the signal we can use the interpolating value (19) or one of 

the following four interpolating values: 

 
      (0)

1 12 1,2 1,2 1 1, 1, 1 , ,
1

2
l l lV m n k C m n k C m n k       

, (24) 

33
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      (1)

1 12 1,2 1,2 1 , 1, 1 1, ,
1

2
l l lV m n k C m n k C m n k       

, (25) 

 
      (2)

1 12 1,2 1,2 1 , , 1 1, 1,
1

2
l l lV m n k C m n k C m n k       

, (26) 

 
      (3)

1 12 1,2 1,2 1 1, , 1 , 1,
1

2
l l lV m n k C m n k C m n k       

. (27) 

The “boundary” interpolating function (12) in this situation takes the form: 

      (2) ( )2 1,2 1,2 1 2 1,2 1,2 1 argmin 2 1,2 1,2 1,j
l l i

i
P m n k V m n kjn k m           

. (28) 

 
Figure 3. Three-dimensional interpolating functions (24-27) of the adaptive interpolator. 

 

Thus, in the introduced notation, the three-dimensional adaptive interpolator is described by the 

expression: 

 

 
   

   

lim

lim

(1)

(2)

2 1,2 1,2 1 2 1,2 1,2 1
2 1,2 1,2 1

2 1,2 1,2 1 2

,

1,2 1,2 1,

l

l

l

l

l

l

l

P m n k mi n k
P m n k

P m n k m n k

f

if

    
 

 

   
  

       (29) 

where, for each scale level, the feature  2 1,2 1,2 1l m n k    is calculated according to expressions 

(8-10), and compared with threshold lim  for each level. 

In the two-dimensional case, the smoothing interpolator (6) can be written in the form: 

 
         (1)

1 1 1 1

1
2 1,2 1 , 1, , 1 1, 1

4
l l l l lP m n C m n C m n C m n C m n            

 (30) 

Differences i  (7) in this case take the form: 

 
     (0)

1 12 1,2 1 , 1, 1l l lm n C m n C m n       
,  (31) 

 
     (1)

1 12 1,2 1 , 1 1,l l lm n C m n C m n       
. (32) 

The corresponding interpolating values are written as follows: 

 
      (0)

1 12 1,2 1 1, 1 ,
1

2
l l lV m n C m n C m n     

, (33) 

 
      (1)

1 12 1,2 1 , 1 1
2

,
1

l l lV m n C m n C m n     
. (34) 

For the interpolation itself in the two-dimensional case, it is more appropriate to use a two-

parameter adaptive interpolation function: 

 

 

   

   

   

lim( )

lim( ) l

(0)

(1)

(1)

im( )

lim( )

2 1,2 1 2 1,2 1

2 1,2 1 2 1,2 1 2 1,2 1

2 1,2 1 2 1,2

,

,

, 1

l

l l

l

l l

l l l

l l

V m n m n

P m n P m n m n

if

if

V f m nim n



 



   


  

   

    


 

   

     (35) 

where  ,l m n  is the feature of boundary direction. 

 
     (0) (1), , ,l l lm n m n m n   

 (36) 

At each signal point, the feature  ,l m n  is compared with two thresholds
lim( )
l

 , 
lim( )
l

 , because 

optimization by these parameters can be done separately. 
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5. Experimental study of the adaptive interpolator for real-world multidimensional signals 

The proposed adaptive interpolator (30-36) was implemented programmatically in C++ and built into 

the hierarchical compression method. This software implementation was used in this article to study 

the effectiveness of the proposed interpolator. To this end, computational experiments were performed 

in real-world multidimensional signals (see Figure 4-5) of two signal sets:  

set no. 1 - TokyoTech hyperspectral dataset [24] (signal sizes 500x500x31 samples, 13 bits) 

set no. 2 - AVIRIS hyper-spectrometer [25] (signal sizes 1086x614x224 samples, 16 bits). 

A measure of the effectiveness of the proposed interpolator was the relative gain in the archive 

size, which was achieved by replacing the smoothing interpolator with an adaptive interpolator in the 

frame of hierarchical compression method: 

 
 1 100%adapt smoothK K   

, (37) 

where smoothK , adaptK  are the compression ratios of the hierarchical compression method when using a 

smoothing and adaptive interpolator, respectively. Typical results of computational experiments are 

shown in Fig. 6-7 and Table 1. The adaptive interpolator has a gain of up to 51% in the size of the 

archive file compared to the smoothing interpolator. 

   

 

   
Figure 4. Fragments of bands 10, 86 of 

test multidimensional signal «Cuprite-2». 

 Figure 5. Bands 0, 30 of test multidimensional 

signal «Fan2». 

 
Figure 6. Gain in %) the adaptive interpolator for the averaging interpolator in test signals 

«Color», «Character», «CD», «Fan2». 

6. Conclusion 

We proposed interpolation algorithms for multidimensional signals based on automatic switching 

between simple interpolating functions at each point of the signal. We described the parameterized 

decision rules that perform this switch. We optimized the parameters of these decision rules on the 

criteria for the minimum energy of post-interpolation residues and criteria of the minimum entropy of 

quantized post-interpolation residues. We proposed a method for reducing the dimension of the 

parametric space of decision rules. We performed computational experiments to study the proposed 
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interpolators on real-world multidimensional signals. We experimentally proved that using the 

adaptive interpolator instead of a smoothing one can significantly improve the efficiency of 

hierarchical signal compression. 

 

Table 1. The gain in %) of the adaptive interpolator for the averaging interpolator depending  

on maximum error max in test signals «Butterfly2», « Butterfly3», ... ,«Low Altitude», «Moffett 

Field». 

max Signal set 0 10 50 100 150 200 250 max() 

Butterfly2 set no.1 1.17 4.84 8.00 9.17 9.57 9.19 8.62 9.57 

Butterfly3 set no.1 1.87 7.24 13.81 17.07 17.74 16.74 14.98 17.74 

Butterfly4 set no.1 1.87 6.37 11.45 13.17 13.81 13.51 12.98 13.81 

Butterfly5 set no.1 1.30 6.36 11.35 12.63 12.47 11.00 9.41 12.63 

Butterfly6 set no.1 1.23 5.20 9.01 10.90 11.58 11.28 11.10 11.58 

Butterfly7 set no.1 1.48 5.24 9.81 11.55 12.16 11.55 10.39 12.16 

Butterfly set no.1 1.68 5.49 9.02 9.89 9.49 8.64 7.64 9.89 

Butterfly8 set no.1 1.88 7.03 11.46 12.37 12.36 12.14 10.72 12.37 

cd set no.1 2.66 11.18 19.79 20.74 20.64 19.25 17.69 20.74 

Character set no.1 6.21 16.26 24.34 27.73 28.19 27.02 24.64 28.19 

Chart24 set no.1 5.57 18.18 36.27 40.18 36.60 30.42 25.57 40.18 

ChartRes set no.1 7.80 18.76 28.57 36.31 39.30 39.49 38.91 39.49 

Cloth2 set no.1 0.64 1.62 2.28 2.13 1.92 1.48 1.14 2.28 

Cloth3 set no.1 1.16 2.88 4.11 4.28 4.18 2.98 1.88 4.28 

Cloth4 set no.1 0.58 1.32 2.11 2.18 1.51 0.66 0.06 2.18 

Cloth5 set no.1 2.10 4.60 6.42 5.91 5.66 5.11 4.07 6.42 

Cloth set no.1 0.84 1.94 2.92 2.74 2.40 1.81 1.27 2.92 

colorchart set no.1 4.10 15.40 37.31 44.07 39.92 34.67 30.61 44.07 

color set no.1 5.24 15.63 30.38 43.53 50.40 51.00 47.56 51.00 

doll set no.1 0.44 1.34 1.72 1.82 1.83 1.87 1.78 1.87 

fan2 set no.1 3.15 8.50 12.19 12.49 11.51 10.68 10.11 12.49 

fan3 set no.1 2.50 6.54 9.77 9.92 9.41 8.82 8.23 9.92 

fan set no.1 1.76 4.12 6.29 6.25 5.51 4.70 3.99 6.29 

flower2 set no.1 1.60 4.35 5.63 4.59 2.75 1.24 -0.71 5.63 

flower3 set no.1 2.28 6.74 9.43 8.57 6.85 4.97 3.07 9.43 

flower set no.1 2.79 8.42 11.50 9.18 6.54 4.00 2.34 11.50 

party set no.1 3.18 9.51 15.22 16.70 17.03 16.46 16.45 17.03 

tape2 set no.1 4.60 9.87 14.46 14.54 13.07 11.37 9.95 14.54 

tape set no.1 1.61 3.99 5.63 5.61 5.22 4.64 4.11 5.63 

Tshirts2 set no.1 0.76 2.32 3.96 4.77 4.65 4.48 4.52 4.77 

Tshirts set no.1 0.75 2.26 3.82 4.59 4.88 5.11 5.28 5.28 

Cuprite-1 set no.2 0.73 1.89 2.96 3.40 3.44 3.41 2.47 3.44 

Cuprite-2 set no.2 1.26 3.45 5.63 6.84 7.11 6.92 5.95 7.11 

Low Altitude set no.2 1.15 2.91 3.47 2.29 0.79 -0.69 -2.16 3.47 

Moffett Field set no.2 0.71 1.74 1.87 1.64 1.34 1.06 0.76 1.64 
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Figure 7. Gain in %) the adaptive interpolator for the averaging interpolator in test signals 

«Cuprite-1», «Cuprite-2», «Low Altitude», «Moffett Field». 

7. References 

[1] Woods J 2011 Multidimensional Signal, Image, and Video Processing and Coding (Academic 

Press) p 211 

[2] Jensen J 2007 Remote sensing of the environment: an Earth resource perspective (Prentice Hall) 

p 619 

[3] Campbell J 2002 Introduction to remote sensing (Guilford Press) p 667 

[4] Borengasser M, Hungate W and Watkins R 2007 Hyperspectral remote sensing: Principles and 

applications (CRC Press) p 128 

[5] Vapnik V 1998 Statistical Learning Theory (John Wiley & Sons) 

[6] Vasin Y and Neymark Y 1978 Adaptive compression recurrent algorithms using well-adapted 

local restoring functions Mathematical software for CAD: Interuniversity collection 13 

[7] Gulakov K 2013 The choice of neural network architecture for solving the problems of 

approximation and regression analysis of experimental data Bulletin of Bryansk State Technical 

University 2 95-105 

[8] Bakhvalov Y 2007 The method of multidimensional interpolation and approximation and its 

applications (M: Sputnik+) p 108 

[9] Caiafa C 2016 Computing Sparse Representations of Multidimensional Signals Using 

Kronecker Bases Neural Computation Volume 25 186-220 

[10] Butyrsky E, Kuvaldin I and Chalkin V 2010 Approximation of multidimensional functions 

Scientific instrument-making 20 82-92 

[11] Cobanu M and Makarov D 2014 Compression of images by tensor approximation Problems of 

development of promising micro- and nanoelectronic systems 109-112 

[12] Gulakov K 2016 Modeling multidimensional objects on the basis of cognitive maps with neural 

network identification of parameters Thesis for Ph.D 

[13] Cohen A, Davenport M and Leviatan D 2013 On the stability and accuracy of least squares 

approximations Comput. Math. 13 819-834 

[14] Sahnoun S, Djermoun E, Brie D and Comon P 2017 A simultaneous sparse approximation 

method for multidimensional harmonic retrieval Signal Processing 131 36-48 

[15] Donoho D 2006 Compressed sensing IEEE Trans. Inform. Theory 52 1289-1306 

[16] Bigot J, Boyer C and Weiss P 2016 An analysis of block sampling strategies in compressed 

sensing IEEE Trans. Inform. Theory 62 2125-2139 

[17] German E 2014 Algorithms for combining heterogeneous images in on-board visualization 

systems PhD Thesis 

[18] Muratov E and Nikiforov M 2014 Methods to reduce the computational complexity of 

algorithms for combining heterogeneous images Cloud of Science 1 

0,00

2,00

4,00

6,00

8,00

0 50 100 150 200 250

, % 

max 

Cuprite-2 Cuprite-1



 
Image Processing and Earth Remote Sensing  
M V Gashnikov 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2018)              40 

[19] Sayood K 2012 Introduction to Data Compression (The Morgan Kaufmann Series in 

Multimedia Information and Systems) p 743 

[20] Gonzalez R and Woods E 2007 Digital Image Processing (Prentice Hall) p 976 

[21] Maksimov A I and Gashnikov M V 2018 Adaptive interpolation of multidimensional signals for 

differential compression Computer Optics 42 679-687 DOI: 10.18287/2412-6179-2018-42-4-

679-687 

[22] Sergeev V, Gashnikov M and Glumov N 1999 The Informational Technique of Image 

Compression in Operative Remote Sensing Systems RAS Samara Research Center Bulletin 1 

99-107 

[23] Gashnikov M V 2018 Interpolation based on context modeling for hierarchical compression of 

multidimensional signals Computer Optics 42(3) 468-475 DOI: 10.18287/2412-6179-2018-42-

3-468-475 

[24] TokyoTech 31-band Hyperspectral Dataset URL: http://www.ok.sc.e.titech.ac.jp/res/ 

MSI/MSIdata31.html (03.11.2018) 

[25] AVIRIS Data – Ordering Free AVIRIS Standard Data Products Jet Propulsion Laboratory 

URL: http://aviris.jpl.nasa.gov/data/free_data.html (03.11.2018) 

Acknowledgments 

The work was partly funded by RFBR according to the research project 18-01-00667 in parts of «2 

Adaptive interpolation of multidimensional signals» – «5 Experimental study of the adaptive 

interpolator for real-world multidimensional signals» and by the Russian Federation Ministry of 

Science and Higher Education within a state contract with the "Crystallography and Photonics" 

Research Center of the RAS under agreement 007-ГЗ/Ч3363/26 in part of «1 Introduction». 

http://www.amazon.com/Digital-Image-Processing-3rd-Edition/dp/013168728X%3FSubscriptionId%3DAKIAJAPR7NQVQ7M7TN2A%26tag%3Ddspgsm%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3D013168728X
http://www.ok.sc.e.titech.ac.jp/res/
http://aviris.jpl.nasa.gov/data/free_data.html

