
Improving the Effective Utilization of
Supercomputer Resources by Adding
Low-Priority Containerized Jobs⋆

Julia Dubenskaya[0000−0002−2437−4600] and Stanislav
Polyakov∗[0000−0002−8429−8478]

Skobeltsyn Institute of Nuclear Physics, M.V.Lomonosov Moscow State University
(SINP MSU), 1(2), Leninskie gory, GSP-1, Moscow 119991, Russia

s.p.polyakov@gmail.com

Abstract. We propose an approach to utilize idle computational re-
sources of supercomputers. The idea is to maintain an additional queue
of low-priority non-parallel jobs and execute them in containers, using
container migration tools to break the execution down into separate in-
tervals. We propose a container management system that can maintain
this queue and interact with the supercomputer scheduler. We conducted
a series of experiments simulating supercomputer scheduler and the pro-
posed system. The experiments demonstrate that the proposed system
increases the effective utilization of supercomputer resources under most
of the conditions, in some cases significanly improving the performance.

Keywords: Data processing · Supercomputer scheduling · Average load
· Container · Container migration.

1 Introduction

Data processing is one of the most important parts of the data life cycle. In
contemporary practice, supercomputers are increasingly used to process large
amounts of data, as well as to simulate various phenomena. In general, super-
computers cannot utilize all of the available computational resources at all times.
In this paper, we focus on improving the performance of supercomputers by uti-
lizing idle resources.

Modern supercomputers typically have hundreds or thousands of users who
submit a broad range of different computing jobs. Managing these jobs is done
by a scheduler which is a piece of software that maintains a job queue, assigns
computational resources to jobs, and optimizes the performance of the super-
computer based on priorities such as maximizing the average load, minimizing
the average time or the maximum time spent in the queue, or some combination
of these or other metrics.

⋆ The work was supported by the Russian Foundation for Basic Research grant 18-
37-00502 “Development and research of methods for increasing the performance of
supercomputers based on job migration using container virtualization”.



We focus on average load and closely related metrics. For many supercom-
puters, the average load is approximately 90% and can be as low as 70% [1, 2].
It may be caused by insufficient number of submitted jobs (underload), unfit-
ting job sizes (i.e. the jobs cannot fit together into a schedule without leaving
some resources idle), inaccurate estimates of execution time used for planning
the schedule in advance, different optimization priorities or restrictions, etc.

One possible approach to increasing the average load of a supercomputer is
adding low-priority jobs that can utilize idle computational resources. A possible
source of such jobs are scientific experiments that generate petabytes of data
that require primary processing. It is possible to split the data into fragments
and process them independently. Another class of jobs required by scientific
experiments is generating samples by Monte Carlo simulation. These jobs are
available in effectively infinite numbers and can be executed sequentially and
independently, thus they can utilize any available idle resources. An example of
this approach is the use of idle resources of the Titan-2 supercomputer by the
ATLAS project [3].

The implied assumption of this approach is that additional jobs should not
have a significant negative effect on the performance parameters related to reg-
ular jobs. However, even if additional jobs are scheduled with a low priority, this
can divert computational resources from executing regular jobs. The reason for
this is that regular jobs require sufficient amount of resources to be available
simultaneously, whereas additional jobs can start on any resources as soon as
they become available.

A standard basic algorithm for many schedulers is a backfilling algorithm [4]
that uses reservations to ensure that larger jobs are eventually scheduled and fills
the schedule before the reservation time with jobs that will not interfere with the
reservation. Our experiments show that using this algorithm with reservations
for regular jobs still does not prevent the diversion of computational resources
from regular jobs in some cases, particularly for the additional jobs with large
execution time (see section 4).

This problem can be solved or partially solved with the help of some modi-
fications of the scheduling algorithm. Another possible solution is to reduce the
execution time of additional jobs, preferably in a way that is best suited for
scheduling regular jobs, e.g. by making all concurrent additional jobs finish ex-
ecution exactly before the reservation time. This solution can be implemented
with the tools used in container virtualization.

Container virtualization is a method to isolate groups of processes from the
rest of the system in their own user-space instances. Containers are similar to
virtual machines but always use the same OS kernel as the host machine. Con-
tainers tend to be much more lightweight and take less time to start than virtual
machines.

One of the promising features supported by many container virtualization
platforms is the checkpoint/restore in userspace (CRIU) mechanism. This mech-
anism allows one to freeze a running application and create a checkpoint, saving
it as a collection of files. Then the files can be used to restore the application



and run it exactly as it was during the time of the freeze, possibly in another
instance of the operating system. In container virtualization systems, the CRIU
mechanism enables the migration of containers.

We propose an approach to increasing the load of supercomputers by adding
low-priority queues of non-parallel jobs. Executing the jobs in containers allows
the checkpoint mechanisms to be applied to them when necessary, saving the
progress of execution and returning them to the queue. With this approach,
the negative effect of additional queues on the performance parameters related
to regular jobs can often be negligible. The approach addresses the underload
problem and to some degree the problems of unfitting job sizes and inaccurate
execution time estimates.

We have presented a similar approach in [5]. Further research has shown
that we did not take into account several important considerations. Most im-
portantly, we underestimated the time needed for checkpoint procedures. In this
paper, we update our approach based on these considerations. Similar idea was
also proposed in [6] where a quasi scheduler was used to assign idle resources
to additional jobs. Unlike regular jobs which require a specific amount of com-
putational resources and execution time, and unlike additional jobs used in our
approach which can have an arbitrary execution time, the jobs used by quasi
scheduler request a specific execution time but are not restricted to a specific
amount of computational resources.

2 Container Checkpoints

To test our idea, we chose the container platform Docker [7], since it is the
most actively developing project in this area. We also use the fact that Docker
containers are lightweight (compared to virtual machines), so a single server or
computational node can simultaneously run multiple containers without notice-
able decrease in performance.

For Docker, we performed a series of tests for its container migration functions
and measured the time to create a checkpoint and the time to restore from a
checkpoint. The parameters of the test machine are as follows:
• total memory 16GB, swap 16GB;
• processor: 16 cores Intel (R) Xeon (R) CPU E5620 @ 2.40GHz, architecture
x86 64;
• operating system: CentOS Linux release 7.5.1804;
• kernel version: 3.10.0-862.14.4.el7.x86 64.

The measurements show that the time to create a checkpoint, as well as
the time to restore from a checkpoint, have a normal distribution with a very
small value of standard deviation. The average values of these parameters are
highly correlated to the amount of random access memory (RAM) used by the
container and almost do not depend on the CPU load. We tested the time to
create a checkpoint and the time to restore from a checkpoint for the containers
using 1 MB, 100 MB, 200 MB, 400 MB, 800 MB, and 1.6 GB RAM. The average
time to create a checkpoint is, respectively, 1.05, 5.45, 9.81, 19.6, 41.0, and 78.4



seconds. The average time to restore from a checkpoint is, respectively, 1.26, 5.0,
9.22, 17.1, 31.0, and 61.8 seconds. From the obtained results it can be concluded
that the dependence on the amount of RAM used is close to linear in both cases.

The experiments show that the jobs can be successfully saved and restored
from the checkpoints and these procedures take reasonable time for the purposes
of our proposed approach.

3 The Architecture of the Proposed Container
Management System

We assume that our system will interact with a supercomputer scheduler that or-
ganizes the execution of queued jobs on a collection of computational resources.
We will call the minimal amount of resources the scheduler can assign a com-
putational node. We also assume that all computational nodes controlled by the
same scheduler are equivalent.

We propose a container management system for supercomputers that man-
ages the execution of containerized jobs on the computational nodes allotted
by the supercomputer scheduler. The system has two components: a master
program running in the shared memory and a local manager running on the
computational nodes.

The master program submits jobs consisting of an instance of the local man-
ager to the low-priority queue of the scheduler. It also maintains its own queue of
non-parallel jobs to be started in containers, including both new jobs submitted
by users and unfinished jobs returned by instances of the local manager.

Instances of the local manager are started on the allotted computational
nodes by the scheduler. Each instance creates containers, pulls jobs from the
master program queue, and starts them or restores them from checkpoints in
the containers. Before the allotted time is over, the instance creates checkpoints
for all the jobs it has started that are not finished yet and returns them to the
master program queue.

Implementing the container management system does not require changes
to the supercomputer scheduler if the scheduler supports an additional low-
priority queue, because the scheduler does not need to make other distinctions
between jobs submitted to it by the system and regular jobs. In this approach,
the master program must request the execution time for each job it submits
to the scheduler queue. It is possible to adjust the requested time separately
for each job. But without any way to know in advance how much time a job
will spend in the low-priority queue, we do not see how this adjustment can be
used to improve performance. However, having the requested time set for all
the container jobs can significantly reduce CPU time used by main queue jobs
because the container jobs may gradually take over the nodes. We conducted a
series of experiments (similar to those described in the next section) confirming
that adding the infinite queue of one-hour non-parallel jobs generally decreases
the average load by main queue jobs, sometimes by as much as several percent.



Our proposed solution to this problem is synchronized node release: all con-
current instances of the local manager exit at the same time which is published by
the master program, instead of using the entire time allotted by the scheduler.
We will call the time between synchronized node releases the synchronization
frame.

If changes to the scheduler are allowed, several approaches can be imple-
mented. The scheduler has more flexibility than the master program: it can
synchronize the node release partially if there is no need for all of the nodes used
by additional jobs, or refrain from starting additional jobs if the idle nodes can
soon be assigned to a main queue job. The time allotted to an additional job can
be modified when it is already running. Alternatively, the modified scheduler
can let container jobs run without explicit time limits and stop them whenever
the nodes are needed, if the local manager creates checkpoints periodically.

However, the appropriate changes to the scheduler depend on the specifics of
the scheduling algorithm it uses. In the rest of the paper we consider the approach
without modifying the scheduler as more general and easier to implement.

4 Simulation Experiments

We conducted two series of experiments in order to determine the potential
increase in the efficient utilization of computational resources with the proposed
approach. In the experiments we applied the EASY Backfill scheduling algorithm
([4]) to the job queues that were generated based on historical distribution of
the job parameters (execution time and number of used nodes) from Lomonosov
supercomputers.

In the first series, we assumed that there was sufficient number of jobs sub-
mitted to the main queue, so the computational nodes could only remain idle if
all the jobs in the queue required more nodes or more time than was available.
The experiments were conducted for the number of nodes ranging from 1024 to
4000 and determined the average load by main queue jobs, as well as the effective
utilization of the nodes when the container management system was simulated.

In the experiments with the number of nodes and job parameter distributions
similar to those of Lomonosov-1 and Lomonosov-2 supercomputers the resulting
average load was approximately 99.2% and 97.1%, respectively. This is signif-
icantly higher than the historical figures from Lomonosov-1 and Lomonosov-2
from 2016-2017 (92.3% and 88.7%, respectively, see [2]). We assumed that the
reason for this discrepancy was the underload, possibly in conjunction with ad-
ministrative and user restrictions having similar effect of reducing the number
of jobs available for scheduling.

In our second series of experiments jobs were added to the main queue using
the Poisson process with the submission rates chosen to approximate the his-
torical underload. An effectively infinite additional job queue can obviously help
solve the underload problem by itself. Therefore to measure the improvements re-
sulting from our proposed approach the experiments with the additional queue



were conducted both with and without simulating the container management
system.

4.1 Job Queues and Simulation Parameters

Since scheduling simulation does not need to actually run any jobs, each job
was represented by three parameters: the number of nodes it uses, the execu-
tion time, and the requested time. We used two types of queues, one with the
number of nodes and execution time distribution similar to that of historical
jobs on Lomonosov-1 supercomputer in 2018, and another one approximating
Lomonosov-2 historical job parameter distribution in 2016–2017. We will call
them L1 queue and L2 queue, respectively. L1 queue jobs had an average of
12.97 nodes with a standard deviation of 24.13 nodes, an average execution time
of 400.6 minutes with a standard deviation of 979.8 minutes, an average size of
9479 node-minutes with a standard deviation of 40065 node-minutes. L2 queue
jobs had an average of 4.209 nodes with a standard deviation of 6.765 nodes, an
average execution time of 266.3 minutes with a standard deviation of 1332 min-
utes, an average size of 1450 node-minutes with a standard deviation of 16216
node-minutes. The requested time was generated for each job based on its actual
execution time. Based on the observations of user estimates of execution time
from [8] as well as the data and observations from Lomonosov supercomputers
we chose a model with four cases:
• accurate predictions: the requested time is equal to the execution time (also
including the jobs that don’t complete in the allotted time and have to be ter-
minated by the scheduler);
• moderate everestimations: the requested time is the least of the several round
values (10 minutes, 30 minutes, 1 hour, 2 hours, 5 hours, 12 hours, 1 day, 3 days,
7 days, 15 days) greater than the execution time;
• requesting the default time (1 day), unless the execution time is greater, and
same as the previous case otherwise;
• requesting the maximum allowed time (assumed 3 days for the queues based
on Lomonosov-1 data and 15 days for the queues based on Lomonosov-2 data).
Each case was chosen at random with a probability 1/4.

For the first series of the experiments, the main queue length was kept at
100 jobs with the new jobs added immediately to replace the ones that were
scheduled. The second series of experiments were conducted using the Poisson
process for adding jobs to the main queue. The parameters for the Poisson
process were chosen in such a way that the average load of each of the simulated
supercomputers with L1 and L2 queues (without additional jobs) was within
0.5% of the historical average load of the respective supercomputer.

In the first series of experiments the schedules were made for 1024, 1500,
2000, 3000, and 4000 nodes (4000 and 1500 are the approximate numbers of
nodes of the largest fragments of Lomonosov-1 and Lomonosov-2 supercomput-
ers, respectively; 1024 is the maximum number of nodes that a single job is
allowed to use). In the second series of experiments there were only two types of



schedules: for 4000 nodes with L1 main queue, and for 1500 nodes with L2 main
queue.

In each series of experiments the scheduling was made for L1 and L2 main
queues with and without the additional queues of containerized jobs. We used
the synchronized release approach for the containers with the synchronization
frames of 30, 45, 60, 90, 120, and 180 minutes, and the additional 240 and 360
minutes in the second series. In the experiments from the second series where
the non-containerized jobs were added, their execution time was 6, 12, 24, and
48 hours.

The duration of the scheduler slot was 1 minute. Each individual experiment
simulated scheduling for 180 days. For each set of parameters (the main queue
type, the number of nodes, the execution time of additional jobs or the synchro-
nizaion frame if either applied) we conducted 50 experiments if the proposed
container management system was simulated and 100 experiments otherwise.

4.2 Results

The first series of experiments demonstrates that both L1 and L2 queues have
enough small-sized jobs to maintain very high average load without additional
jobs if a sufficient number of jobs is kept in the queue at all times. The average
load increases with the number of the available nodes and surpasses 99% at
4000 nodes with both L1 and L2 queues. Interestingly, the average number of
idle nodes changes only moderately depending on the total number of nodes: it
ranges between 31.4 and 33.6 nodes for L1 queue and between 36.3 and 46.2 for
L2 queue.

Adding containerized jobs with release synchronization further increases the
average load, at the cost of a small fraction of CPU time taken out of executing
the main queue jobs. However, the added load is not equivalent to the load
by regular jobs: the additional jobs have lower priority and use CPU time less
efficiently because of the significant time needed to create checkpoints and restart
from checkpoints. To make the comparison more meaningful we measure the
effective utilization of computational resources instead of the load: u = l − laux
where l is the average load and laux is the average load by auxiliary checkpoint
procedures. There are many variables that can influence the time required for
auxiliary checkpoint procedures. For simplicity, we assume that every time a
node executes containerized jobs, checkpoint procedures take 10 minutes out of
the allotted time. To take into account the difference in priorities we separately
calculate the average load by main queue jobs lm. If the average load by main
queue jobs is lower than the average load without the additional queue ldefault,
we also calculate the trade-off factor F = u−lm

ldefault−lm
(the ratio between the

CPU time effectively used by additional jobs and the CPU time taken out of
executing main queue jobs). If one can assign a numeric value to the relative
importance of main queue jobs compared to additional jobs, then the proposed
container management system should only be used if the expected trade-off factor
is significantly higher than this value.



Fig. 1. Average load without additional jobs (black line), average load by main queue
jobs (green rhombi), and effective utilization (blue triangles) for 1024 nodes, L1 (left)
and L2 (right) main queues, synchronization frames from 30 to 180 minutes.

Fig. 2. Average load without additional jobs, average load by main queue jobs, and
effective utilization for 2000 nodes.

Fig. 3. Average load without additional jobs, average load by main queue jobs, and
effective utilization for 4000 nodes.



The results for 1024, 2000, and 4000 nodes are presented on figures 1–3. The
maximum effective utilization over different synchronizaion frames is approxi-
mately 99.0% and 99.1% for L1 and L2 main queues with 1024 nodes, 99.5%
and 99.6% with 4000 nodes, respectively. The potential decrease in the average
number of idle nodes or nodes performing auxiliary container procedures is 21
and 36.8 nodes for L1 and L2 main queues with 1024 nodes, 13.2 and 20.5 nodes
for L1 and L2 main queues with 4000 nodes, respectively. Relative decrease is 3
and 4.9 times for L1 and L2 main queues with 1024 nodes, 1.7 and 2.3 times for
L1 and L2 main queues with 4000 nodes, respectively.

For L1 main queue, the trade-off factor is moderate and generally decreases
with the increasing number of nodes and the synchronization frame. It never ex-
ceeds 5.1 and is below 3.5 for 4000 nodes. For L2 main queue, the trade-off factor
is quite high: above 7.8 in all of the experiments with synchronization frames up
to 120 minutes. For any given number of nodes there is a synchronization frame
resulting in trade-off factor above 18.9.

Fig. 4. Average load without additional jobs (black line), average load by main queue
jobs (green rhombi), and average load (red triangles) for L1 main queue with 4000
nodes, ldefault = 0.924 (left) and L2 main queue with 1500 nodes and ldefault = 0.8906
(right), executing additional jobs without containers.

In the second series of the experiments adding low-priority queue of non-
parallel jobs without containerization increases the average load to 99.4%–99.6%
for L1 main queue (with 4000 nodes and ldefault = 0.924) and to 97.3%–97.8%
for L2 main queue (with 1500 nodes and ldefault = 0.8906). The corresponding
increase in the average number of busy nodes is 279 to 289 out of 4000 for L1
main queue and 124 to 131 out of 1500 for L2 main queue. However, there is a
difference in the average load by main queue jobs: with L2 main queue it does not
change significantly, and with L1 main queue it decreases significantly, resulting
in the trade-off factor of 4.6 for 6-hour jobs and below 2 for longer jobs despite
higher average load.

In the experiments with simulated container management system, synchro-
nized node release can increase the average load by main queue jobs. The effec-



Fig. 5. Average load without additional jobs (black line), average load by main queue
jobs (green rhombi), and effective utilization (blue triangles) for L1 main queue with
4000 nodes, ldefault = 0.924 (left) and L2 main queue with 1500 nodes and ldefault =
0.8906 (right), executing additional jobs in containers.

tive utilization generally increases with the synchronization frame. With L2 main
queue it exceeds the average load without containers but with L1 main queue
it is always lower than the respective average load. The maximum decrease in
the number of idle nodes or nodes performing auxiliary container procedures is
263 out of 4000 nodes for L1 main queue and 146 out of 1500 nodes for L2 main
queue. The results are presented on figures 4–5.

In summary:
• with L1 main queue without underload the effective utilization increase and
the trade-off factor are not very high, although not necessarily low enough to
rule out the use of our proposed system;
• with L2 main queue without underload the effective utilization increase is
higher and the trade-off factor can be very high, making this case a relatively
good one to use the system;
• with L1 main queue with underload the effective utilization increase is very
high and the alternative approach of using the additional jobs without container-
ization can be unacceptable, making this case the best one to use the system;
• with L2 main queue with underload the effective utilization increase is very
high but most of it is due to the additional job queue itself. The benefits of
containers are moderate but can justify the use of the system thanks to the lack
of trade-off.

5 Conclusion

We proposed a system that manages the execution of non-parallel jobs in con-
tainers and maintains an additional low-priority queue for the supercomputer
scheduler. Our simulation experiments demonstrate that under some assump-
tions the system increases the effective utilization of computational resources.
The increase is not always significant and sometimes the system diverts compu-



tational resources from executing regular jobs, but in many cases we expect the
benefits to be considerable.

Acknowledgements. The work was supported by the Russian Foundation for
Basic Research grant 18-37-00502 “Development and research of methods for in-
creasing the performance of supercomputers based on job migration using con-
tainer virtualization”. We would also like to thank Sergey Zhumatiy for the
provided information and useful discussions.

References

1. Antonov, A.S. et al.: Examination of supercomputer system jobs flow dynamic char-
acteristics. Computational methods and programming, 14(4), 104–108 (2013) (in
Russian)

2. Leonenkov, S., Zhumatiy, S.: Supercomputer Efficiency: Complex Approach Inspired
by Lomonosov-2 History Evaluation. In: Russian Supercomputing Days: Proceedings
of the International Conference (September 24–25, 2018, Moscow, Russia), pp. 518–
528. Moscow State University (2018)

3. Barreiro Megino, F. et al. [ATLAS Collaboration]: Integration of Titan supercom-
puter at OLCF with ATLAS Production System. Journal of Physics: Conference
Series, 898(9) p. 092002 (2017)

4. Lifka, D.: The ANL/IBM SP scheduling system. In: Feitelson, D.G., Rudolph, L.
(eds.) 1st Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
LNCS, vol. 949, pp. 295–303. Springer-Verlag (1995)

5. Polyakov, S.P., Dubenskaya, Yu.Yu.: Improving the load of supercomputers based
on job migration using container virtualization. In: Selected Papers of the 8th Inter-
national Conference ”Distributed Computing and Grid-technologies in Science and
Education”, CEUR Workshop Proceedings, vol. 2267, pp. 243–247. M. Jeusfeld c/o
Redaktion Sun SITE, Informatik V, RWTH Aachen (2018)

6. Baranov, A.V., Kiselev, E.A., Lyakhovets, D.S.: The quasi scheduler for utilization
of multiprocessing computing system’s idle resources under control of the Man-
agement System of the Parallel Jobs. Bulletin of the South Ural State University.
Series Computational Mathematics and Software Engineering 3(4), 75–84 (2014)
(in Russian)

7. https://docker.com/
8. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Modeling user runtime estimates. In: Fei-

telson, D.G. et al. (eds.) 11th Workshop on Job Scheduling Strategies for Parallel
Processing (JSSPP), LNCS, vol. 3834, pp. 1–35. Springer-Verlag (2005)


