
An Empirical Comparison of FAISS and FENSHSES for Nearest
Neighbor Search in Hamming Space

Cun (Matthew) Mu†
Walmart Labs
Hoboken, NJ

matthew.mu@jet.com

Binwei Yang†
Walmart Labs
Sunnyvale, CA

BYang@walmartlabs.com

Zheng (John) Yan
Walmart Labs
Hoboken, NJ
john@jet.com

ABSTRACT
In this paper, we compare the performances of FAISS and FENSHSES
on nearest neighbor search in Hamming space–a fundamental task
with ubiquitous applications in nowadays eCommerce. Comprehen-
sive evaluations are made in terms of indexing speed, search latency
and RAM consumption. This comparison is conducted towards a
better understanding on trade-offs between nearest neighbor search
systems implemented in main memory and the ones implemented
in secondary memory, which is largely unaddressed in literature.

CCS CONCEPTS
• Information systems → Nearest-neighbor search; Image
search; •Applied computing→ Online shopping; • Software
and its engineering → Memory management;

KEYWORDS
Nearest neighbor search, FAISS, FENSHSES, Hamming space, Bi-
nary codes, Vector similarity search, Full-text search engines, Elas-
ticsearch

ACM Reference Format:
Cun (Matthew) Mu†, Binwei Yang†, and Zheng (John) Yan. 2019. An Em-
pirical Comparison of FAISS and FENSHSES for Nearest Neighbor Search
in Hamming Space. In Proceedings of the SIGIR 2019 Workshop on
eCommerce (SIGIR 2019 eCom), 3 pages.

1 INTRODUCTION
Nearest neighbor search (NNS) within semantic embeddings (a.k.a.,
vector similarity search) has become a common practice in ubiq-
uitous eCommerce applications including neural ranking model
based text search [3, 12], content-based image retrieval [16, 22], col-
laborative filtering [7], large-scale product categorization [8], fraud
detection [18], etc. While vector similarity search is capable of sub-
stantially boosting search relevancy by understanding customers’
intents more semantically, it presents a major challenge: how to
conduct nearest neighbor search among millions or even billions of
high-dimensional vectors in a real-time and cost-effective manner.

† C. Mu and B. Yang contributed equally to this work.

Copyright © 2019 by the paper’s authors. Copying permitted for private and academic
purposes.
In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.):
Proceedings of the SIGIR 2019 eCom workshop, July 2019, Paris, France, published at
http://ceur-ws.org

The fundamental trade-off between search latency and cost-
effectiveness would naturally classify nearest neighbor search solu-
tions into two broad categories.

NNS solutions implemented in main memory. This type of NNS
solutions has been extensively studied and explored in the field
of information retrieval (IR). As a result, the majority of those
widely used ones (e.g., Spotify’s Annoy [2], Facebook’s FAISS [9]
and Microsoft’s SPTAG [5, 21]) in nowadays software market fall
into this category.

NNS solutions implemented in secondary memory. In contrast, the
second type of NNS solutions are delivered only recently by active
efforts from both academia and industry [1, 11, 14, 16, 19, 20] to
empower full-text search engines (e.g., Elasticsearch and Solr) with
the capability of finding nearest neighbors. By leveraging inverted-
index-based information retrieval systems and cutting-edge engi-
neering designs from these full-text search engines, such full-text
search engine based solutions are capable of economically reduce
RAM consumption [1], incoherently supporting multi-model search
[16] and being extremely well-prepared for production deployment
[20]. However, some of the critical performance questions have not
been quantitatively answered in literature:

• how much RAM could these full-text search based solutions
save?

• how much search latency would these solutions sacrifice in
order to reduce RAM consumption?

In this paper, we will shed light on the above questions through a
case study on the task of nearest neighbor search in Hamming space
(i.e., the space of binary codes). This task is an extremely important
subclass of NNS, as learning and representing textual, visual and
acoustic data with compact and semantic binary vectors is a pretty
mature technology and common practice in nowadays IR systems.
In particular, eBay recently builds its whole visual search system
[22] upon finding nearest neighbors within binary embeddings
generated through deep neural network models.

We choose one representative solution of each category–FAISS
(Facebook AI Similarity Search) from Facebook’s AI Research Lab
[9] and FENSHSES (Fast Exact Neighbor Search in Hamming Space
on Elasticsearch) from the search and catalog teams at Walmart
Labs [14, 15]–to evaluate their performances in finding nearest
neighbors within binary codes.

SIGIR 2019 eCom, July 2019, Paris, France C. Mu et al.

2 FAISS vs. FENSHSES
We will compare performances of FAISS and FENSHSES from three
key perspectives: time spent in indexing, search latency and RAM
consumption.

Data generation. Our dataset B is generated using 2.8 million
images selected from Walmart.com’s home catalog through pHash
[6, 10]–one of the most effective perceptual hash schemes in gen-
erating fingerprints for multimedia files (e.g. images, audios and
videos)–withm ∈ {64, 256, 1024, 4096} respectively. Note that vec-
tor similarity search based on pHash has been widely used in a
variety of visual tasks including forensic image recognition [17],
duplicate image detection [4] and copyright protection [13], etc.

Settings. For FAISS, we use its binary flat index with five threads.
For a fair comparison, we accordingly deploy FENSHSES by creating
its Elasticsearch index with five shards and zero replica. The rest of
configurations are left as their default and suggested values. Both
FAISS and FENSHSES are set up and tested on the same Microsoft
Azure virtual machine.

Speed in indexing. During the indexing phase, FAISS indexes the
data into main memory (i.e., RAM), while FENSHSES indexes the
data into secondary memory (e.g., hard disk). As a consequence,
FAISS is much faster than FENSHSES in terms of data indexing (see
Table 1). But on the other hand, whenever the process is killed and
needs a restart, FAISS has to go through this procedure again to
re-index data into RAM, while FENSHSES could unaffectedly use
its built index on hard disk without re-indexing.

of Bits FAISS
(sec.)

FENSHSES
(sec.)

64 18.5 75.5
256 37.7 140.2
1024 111.9 369.5
4096 397.3 1300.9

Table 1: Indexing time consumption. FAISS is about four times
faster than FENSHSES in creating the index for nearest neighbor
search.

Search latency. We randomly select 10, 000 binary codes from B

to act as query codes. For each query code q, we instruct FAISS and
FENSHSES to find all r -neighbors of q in B, namely

BH (q, r) := {b ∈ B | dH (b,q) ≤ r } , (2.1)

where dH (b,q) :=
∑m
i=1 1{bi,qi } denotes the Hamming distance

between binary code b and q, and the Hamming radius r ≥ 0. As
shown in Table 2, FENSHSES is quite competitive for small radium r .
This is because FENSHSES fully leverages Elasticsearch’s inverted
index to first conduct a sub-code filtering to only consider a subset
of B for Hamming distance computation, which is most effective
for small r . In contrast, FAISS scans every binary code in B, so its
search latency is almost invariant with respect to r . For applications
(e.g., near-duplicate image detection and visual search) where we
care most about nearest neighbors within a small radius, FENSHSES
could be in a more favorable position than FAISS.

RAM consumption. Since FAISS is implemented in main memory,
its RAM consumption undoubtedly rises along with the increase in
the size of dataset B, as shown in Table 3. In contrast, by leveraging
the highly optimized disk-based index mechanics behind full-text
search engines, FENSHSES consumes a much smaller amount of
RAM when conducting nearest neighbor search. This property
makes FENSHSES more cost-effective and thus more suitable espe-
cially to big-data applications.

of Bits r
FAISS
(ms)

FENSHSES
(ms)

64
3 34.0 5.8
7 37.0 25.7
11 42.7 117.7

256
15 42.9 7.8
31 42.8 22.5
47 45.4 77.7

1024
63 79.2 31.6
127 81.9 89.9
191 90.4 250.0

4096
255 222.7 134.2
511 223.2 612.5
767 223.3 1797.5

Table 2: Search latency. FENSHSES is quite competitive for r -
neighbor search when the Hamming distance r is small, while
the performance of FAISS is pretty robust with respect to r . This
provides FAISS and FENSHSES different edges for the task of NNS.

of Bits r
FAISS
(GB)

FENSHSES
(GB)

64
3 2.2 1.6
7 2.2 1.6
11 2.2 1.6

256
15 2.3 1.6
31 2.3 1.6
47 2.3 1.6

1024
63 2.9 1.6
127 2.9 1.6
191 2.9 1.6

4096
255 4.9 1.6
511 4.9 1.6
767 4.9 1.6

Table 3: Main memory (RAM) consumption. The RAM con-
sumed by FAISS substantially grows with the increase in the size
of dataset B. In contrast, FENSHESE consumes a constant amount
of RAM, which is much smaller than the one consumed by FAISS.

3 CONCLUSION
In this case study, we compare FAISS and FENSHSES for the task
of nearest neighbor search in Hamming space. By evaluating their
performances in terms of speed in data indexing, search latency

FAISS vs. FENSHSES SIGIR 2019 eCom, July 2019, Paris, France

and RAM consumption, we hope practitioners could now better
understand the pros and cons of the main memory based NNS
solutions and the secondary memory based ones, and thus make
their best choices accordingly (at least in NNS systemswithin binary
cods). In the future, we will compare FAISS and FENSHSES under a
wider range of applications; and moreover, we will also go beyond
Hamming space to evaluate vector similarity search systems for
general NNS problems.

ACKNOWLEDGEMENT
We are grateful to three anonymous reviewers for their helpful
suggestions and comments that substantially improve the paper.
CM would like to thank Jun Zhao and Guang Yang for insightful
discussions on FENSHSES. BY would like to thank Alessandro Mag-
nani for helpful discussions on pHash and its related applications,
and Zuzar Nafar for his support on this study.

REFERENCES
[1] G. Amato, P. Bolettieri, F. Carrara, F. Falchi, and C. Gennaro. 2018. Large-Scale

Image Retrieval with Elasticsearch. In SIGIR.
[2] Erik B. 2018. Annoy: Approximate Nearest Neighbors in C++/Python. https:

//pypi.org/project/annoy/ Python package version 1.13.0.
[3] E. P. Brenner, J. Zhao, A. Kutiyanawala, and Z. Yan. 2018. End-to-End Neural

Ranking for eCommerce Product Search. In SIGIR eCommerce Workshop.
[4] A. Chaudhuri, P. Messina, S. Kokkula, A. Subramanian, A. Krishnan, S. Gandhi,

A. Magnani, and V. Kandaswamy. 2018. A Smart System for Selection of Optimal
Product Images in E-Commerce. In Big Data.

[5] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason
Li, Chuanjie Liu, Lintao Zhang, and Jingdong Wang. 2018. SPTAG: A library for
fast approximate nearest neighbor search. https://github.com/Microsoft/SPTAG

[6] Z. Christoph. 2010. Implementation and Benchmarking of Perceptual Image Hash
Functions. In Upper Austria University of Applied Sciences. Hagenberg Campus.

[7] M. Deshpande and G. Karypis. 2004. Item-based top-n recommendation algo-
rithms. ACM Transactions on Information Systems (TOIS) 22, 1 (2004), 143–177.

[8] H. Hu, R. Zhu, Y. Wang, W. Feng, X. Tan, and J. Huang. 2018. A Best Match KNN-
based Approach for Large-scale Product Categorization. In SIGIR eCommerce
Data Challenge.

[9] J. Johnson, M. Douze, and H. Jégou. 2017. Billion-scale similarity search with
GPUs. arXiv preprint arXiv:1702.08734 (2017).

[10] E. Klinger and D. Starkweather. 2010. pHash–the open source perceptual hash
library. Technical Report. accessed 2016-05-19.[Online]. Available: http://www.
phash. org/apps.

[11] M. Lux and O. Marques. 2013. Visual Information Retrieval Using Java and LIRE.
Vol. 25. Morgan & Claypool Publishers.

[12] A. Magnani, F. Liu, M. Xie, and S. Banerjee. 2019. Neural Product Retrieval at
Walmart. com. In WWWWorkshop on eCommerce and NLP. ACM.

[13] R. Mehta, N. Kapoor, S. Sourav, and R. Shorey. 2019. Decentralised Image Sharing
and Copyright Protection using Blockchain and Perceptual Hashes. In COM-
SNETS.

[14] C. Mu, J. Zhao, G. Yang, B. Yang, and Z. Yan. 2019. Empowering Elasticsearch
with Exact and Fast r -Neighbor Search in Hamming Space. arXiv preprint
arXiv:1902.08498 (2019).

[15] C. Mu, J. Zhao, G. Yang, B. Yang, and Z. Yan. 2019. Fast and Exact Nearest
Neighbor Search in Hamming Space on Full-Text Search Engines. In SISAP.

[16] C. Mu, J. Zhao, G. Yang, J. Zhang, and Z. Yan. 2018. Towards Practical Visual
Search Engine Within Elasticsearch. In SIGIR eCommerce Workshop.

[17] A. Peter, T. Hartmann, S. Müller, and S. Katzenbeisser. 2012. Privacy-preserving
architecture for forensic image recognition. In WIFS.

[18] A. Raghava-Raju. 2017. Predicting Fraud in Electronic Commerce: Fraud Detec-
tion Techniques in E-Commerce. International Journal of Computer Applications
171, 2 (2017).

[19] M. Ruzicka, V. Novotny, P. Sojka, J. Pomikalek, and R. Rehurek. 2017. Flexible
Similarity Search of Semantic Vectors Using Fulltext Search Engines. In ISWC
HSSUES Workshop.

[20] J. Rygl, J. Pomikalek, R. Rehurek, M. Ruzicka, V. Novotny, and P. Sojka. 2017.
Semantic Vector Encoding and Similarity Search Using Fulltext Search Engines.
In RepL4NLP Workshop.

[21] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li. 2012. Scalable k-nn graph
construction for visual descriptors. In CVPR.

[22] F. Yang, A. Kale, Y. Bubnov, L. Stein, Q. Wang, H. Kiapour, and R. Piramuthu.
2017. Visual search at ebay. In KDD.

https://pypi.org/project/annoy/
https://pypi.org/project/annoy/
https://github.com/Microsoft/SPTAG

	Abstract
	1 Introduction
	2 FAISS vs. FENSHSES
	3 Conclusion
	References

