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Abstract. Algebras of finitary relations naturally generalize the algebra of binary relations with 
the left composition. In this paper, we consider some properties of such algebras. It is well 
known that we can study the hypergraphs as finitary relations. In this way the results can be 
applied to graph and hypergraph theory, automatons and artificial intelligence. 

1. Introduction
It is obvious that graphs and binary relations are closely related. We often use the facts of the binary
relations theory in graph theory to solve some algorithmic problems. In the same way, we can consider
hypergraphs as finitary relations. This could be a good idea for IT and AI, especially for pattern
recognition and machine learning [1-13].

By now it has become common to use universal algebras [14] in various applications [15]. 
Algebraic methods can also be efficiently applied in graph theory. For example, the shortest path 
problem can be solved by transitive closure algorithm for binary relation [16]. 

In this way, and following by [17], we are going to study hypergraphs as elements of algebraic 
structures. 

At first, we define a (n-uniform) hypergraph as a finitary relation on finite set U , in other words, as 
a subset of nU . In case of 2n =  this leads to graph as a binary relation. Boolean algebras

( )2 , , , , ,U U U U× ∪ ∩ ∅ ×  and ( )2 , , , , ,
nU nU∪ ∩ ∅  are well known to us. 

It is less trivial to define the inverse operation and the left composition for finitary relations. We 
have to start from inverse operation, left and right compositions for binary relations: 

( ) ( ){ }1
2 1 1 2, | ,R u u u u R− = ∈ , (1) 

( ) ( ) ( ){ }1 2 1 2 0 1 0 1 0 2 2, | , ,R R u u u u u R u u R= ∃ ∈ ∧ ∈ , (2) 

R1◦R2 = R2◦R1 = {(u1,u2) |Ǝ  u0(u0,u2)ЄR1^(u1,u0) Є R2}
 (3) 

Note that  are isomorphic monoids, where I  is identity relation on U . By 
the way, we can define operations 

1
1 1 2 1 2R R R R−=  , (4) 

(5) 
1

1 2 2 1 2R R R R−=  , (6)
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(7) 
1 1

1 3 2 1 2R R R R− −=  , (8) 
(9) 

This makes it possible to set the following pairs of isomorphic magmas. 
( ) ( )1 12 , , 2 , ,U U U UI I× ×   are isomorphic magmas with left identity elements. 

( ) ( )2 22 , , 2 , ,U U U UI I× ×   are isomorphic magmas with right identity elements. 

( ) ( )3 32 , 2 ,U U U U× ×    are isomorphic magmas without identity elements. 

It is easy to see that in the symmetric case 1R R−=  all of monogenic monoids { } ( )
0
, ,n

n
R I

∞

=
 , 

{ } ( )
0
, ,n

n
R I

∞

=
 , { } ( )

0
, ,n

in
R I

∞

=
 , { } ( )

0
, ,n

in
R I

∞

=
  ( 1..3i∈ ) are equal.

The monogenic monoid { } ( )
0
, ,n

n
R I

∞

=
  and distributive algebraic structure { } ( )

0
, , , ,n

n
R I

∞

=
∪ ∅

are useful to treat all-pairs shortest path problem [16]. We are going to define and study hypergraph 
operations similar to (1)-(9). 

2. Algebras of finitary relations
Let us consider the underlying set of finitary relations 2

nU , and define the following unary and binary 
operations for i j≠  

( ) ( ){ }(ij) (ji)
1 1,.., ,.., ,.., | ,.., ,.., ,..,j i n i j nR R u u u u u u u u R= = ∈ , (10) 

( ) ( ) ( ){ }1 2 1 0 1 0 1 1 0 2,.., ,.., ,.., | ,.., ,.., ,.., ,.., ,.., ,..,ij i j n j n i nR R u u u u u u u u u R u u u u R= ∃ ∈ ∧ ∈ . (11)
Obviously, the operation (10) is an involution. 

( )(ij)(ij)R R= . (12) 
Moreover, 

1 2 2 1ij jiR R R R=  . (13) 
It is easy to prove that operation (11) is associative. Actually, 

( ) ( ) ( ) ( )1 1 2 3 0 1 0 1 1 0 2 3,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i j n ij ij j n i n iju u u u R R R u u u u u R u u u u R R∈ ⇔ ∃ ∈ ∧ ∈ ⇔  

( ) ( ) ( )( )0 1 0 1 0 1 0 0 2 1 0 3,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,j n n i nu u u u u R u u u u u R u u u u R′ ′ ′⇔ ∃ ∈ ∧ ∃ ∈ ∧ ∈ ⇔

( ) ( )( ) ( )0 0 1 0 1 1 0 0 2 1 0 3,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,j n n i nu u u u u u R u u u u R u u u u R′ ′ ′⇔ ∃ ∃ ∈ ∧ ∈ ∧ ∈ ⇔

( ) ( )0 1 0 1 2 1 0 3,.., ,.., ,.., ,.., ,.., ,..,j n ij i nu u u u u R R u u u u R′ ′ ′⇔ ∃ ∈ ∧ ∈ ⇔

( ) ( )1 1 2 3,.., ,.., ,..,i j n ij iju u u u R R R⇔ ∈   .
Then we set 

( ){ }1,.., ,.., ,.., | 1.. 2
nU

ij i j n k j iI u u u u k n u U u u= ∈ ∧ ∈ ∧ = ∈ . (14) 
It is easy to see 

( ) ( ) ( )1 0 1 0 1 0,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i j n ij ij j n ij i nu u u u I R u u u u u I u u u u R∈ ⇔ ∃ ∈ ∧ ∈ ⇔

( ) ( )0 1 0 0 1,.., ,.., ,.., ,.., ,.., ,..,i n j i j nu u u u u R u u u u u u R⇔∃ ∈ ∧ = ⇔ ∈ ,
and similarly 

( ) ( ) ( )1 0 1 0 1 0,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i j n ij ij j n i n iju u u u R I u u u u u R u u u u I∈ ⇔ ∃ ∈ ∧ ∈ ⇔

( ) ( )0 1 0 0 1,.., ,.., ,.., ,.., ,.., ,..,j n i i j nu u u u u R u u u u u u R⇔∃ ∈ ∧ = ⇔ ∈ .
Thus, 
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ij ij ij ijI R R I R= =  . (15) 
Hence we have just proved the 
Lemma 1. ( )2 , ,

nU
ij ijI  is a monoid. 

Note that 

( ) ( ) ( )(ij)

1 1 2 1 1 2,.., ,.., ,.., ,.., ,.., ,..,i j n ij j i n iju u u u R R u u u u R R∈ ⇔ ∈ ⇔ 

( ) ( )0 1 0 1 1 0 2,.., ,.., ,.., ,.., ,.., ,..,i n j nu u u u u R u u u u R⇔∃ ∈ ∧ ∈ ⇔

( ) ( )(ij) (ij)
0 1 0 1 1 0 2,.., ,.., ,.., ,.., ,.., ,..,i n j nu u u u u R u u u u R⇔∃ ∈ ∧ ∈ ⇔

( ) ( )(ij) (ij) (ij) (ij)
1 1 2 1 2 1,.., ,.., ,.., ,.., ,.., ,..,i j n ji i j n iju u u u R R u u u u R R⇔ ∈ ⇔ ∈  .

In that way 

( )(ij) (ij) (ij) (ij) (ij)
1 2 1 2 2 1ij ji ijR R R R R R= =   . (16) 

Hence the bijective function ( ) (ij):f R R=  is an isomorphism of monoids ( )2 , ,
nU

ij ijI and 

( )2 , ,
nU

ji jiI .

Moreover, 

( ) ( ) ( )(ij)
1 1 2 1 1 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i k j n ik j k i n iku u u u u R R u u u u u R R∈ ⇔ ∈ ⇔ 

( ) ( )0 1 0 1 1 0 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,k i n j i nu u u u u u R u u u u u R⇔∃ ∈ ∧ ∈ ⇔

( ) ( )(ij) (ij)
0 1 0 1 1 0 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i k n i j nu u u u u u R u u u u u R⇔∃ ∈ ∧ ∈ ⇔

( ) ( )(ij) (ij) (ij) (ij)
1 1 2 1 2 1,.., ,.., ,.., ,.., ,.., ,..,i j n jk i j n kju u u u R R u u u u R R⇔ ∈ ⇔ ∈  .

From which we obtain 
( )(ij) (ij) (ij) (ij) (ij)

1 2 1 2 2 1ik jk kjR R R R R R= =   . (17) 
Hence we have proved the 
Lemma 2. Monoids ( )2 , ,

nU
ik ikI and ( )2 , ,

nU
jk jkI are isomorphic, as well as monoids 

( )2 , ,
nU

ij ijI  and ( )2 , ,
nU

ji jiI . 

Let us set an algebraic structure ( )2 , , , ,
nU

ij ik ij ikI I   and then we can write the following logical 

consequences: 
( ) ( ) ( )1 1 2 3 0 1 0 1,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i j k n ij ik j k nu u u u u R R R u u u u u u R∈ ⇔ ∃ ∈ ∧ 

( ) ( )1 0 2 3 0 0 1 0 1,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i k n ik j k nu u u u u R R u u u u u u u R′∧ ∈ ⇔ ∃ ∃ ∈ ∧

( ) ( )1 0 0 2 1 0 0 3,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,k n i nu u u u u R u u u u u R′ ′∧ ∈ ∧ ∈ ⇔

( ) ( )0 0 1 0 1 1 0 0 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,j k n k nu u u u u u u R u u u u u R′ ′∃ ∃ ∈ ∧ ∈ ∧

( )1 0 0 3,.., ,.., ,.., ,..,i nu u u u u R′∧ ∈ ⇒

( ) ( )( )0 0 1 0 1 1 0 0 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,j k n k nu u u u u u u R u u u u u R′ ′∃ ∃ ∈ ∧ ∈ ∧

( )( ) ( )0 1 0 0 3 0 1 0 1 2,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,i n j k n iju u u u u u R u u u u u u R R′ ′ ′∧ ∃ ∈ ⇔ ∃ ∈ ∧

( ) ( )( )0 1 0 0 3 1 0 0,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., 1i n j n Ru u u u u u R u u u u u′ ′∧ ∃ ∈ ∧ ∈ ⇔

( ) ( )0 1 0 1 2 1 0 3,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., 1j k n ij i j n ij Ru u u u u u R R u u u u u R′ ′ ′⇔ ∃ ∈ ∧ ∈ ⇔ 

( ) ( ) ( )1 1 2 3,.., ,.., ,.., ,.., 1i j k n ij ik ij Ru u u u u R R R⇔ ∈    . 
This means that the following Lemma is true. 
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Lemma 3. In an ordered algebra ( )2 , , , , , ,0 ,1
nU

ij ik ij ik R RI I⊆  , the pseudo distributive law holds 

( ) ( ) ( )1 2 3 1 2 3 1ij ik ij ik ij RR R R R R R⊆     . (18) 

According to [17], we use the notation 1 : n
R U=  and 0 :R = ∅ . 

Then look at composition 
( ) ( ) ( )

( ) ( )

(ij) (ij)
1 0 1 0 1 0

0 1 0 1 0

,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,..,

,.., ,.., ,.., ,.., ,.., ,.., .

i j n ij j n i n

j n i n

u u u u R R u u u u u R u u u u R

u u u u u R u u u u R

∈ ⇔ ∃ ∈ ∧ ∈ ⇔

⇔∃ ∈ ∧ ∈


(19) 

Definition 1. The finitary relation R  is called a function from i-th to j-th argument if 

( ) ( )1 1 1,..., ,.., , ,.., ,.., ,.., ,.., ,.., ,.., ,..,i j j n i j n i j n j ju u u u u u u u u R u u u u R u u′ ′ ′∀ ∈ ∧ ∈ → = . (20) 
We can obtain from (19) - (20) the following set inclusion 

( ) ( )(ij) (ij)
1 1,.., ,.., ,.., ,.., ,.., ,..,i j n ij i j i j n ij ij iju u u u R R u u u u u u I R R I∈ ⇒ = ⇔ ∈ ⇔ ⊆  . (21)

Definition 2. The finitary relation R  is called a surjection from i-th argument if 

( )1 1 1 0 1 0,..., , ,.., ,.., ,.., ,.., ,..,i i j n j nu u u u u u u u u u R− +∀ ∃ ∈ . (22) 
From (21) - (22) we can get the reverse set inclusion 

(ij)
ij ijI R R⊆  . (23) 

Thus, in the case of R  is a surjective function from i-th to j-th argument we have the equality 
(ij)

ij ijR R I= . (24) 
Similarly, in the case of R  is a surjective function from j-th to i-th argument we have the equality 

(ij)
ij ijR R I= . (25) 

Let us denote the set of surjective functions from both (i-th to j-th and j-th to i-th) arguments as ijF . 
It is easy that ijF  is closed by ij , and hence we have proved the 

Lemma 4. ( ), ,ij ij ijF I  is a subgroup of the monoid ( )2 , ,
nU

ij ijI . 

As well as binary relations, finitary relations have the following properties [17] 
( ) ( ) ( )1 2 3 1 2 1 3ij ij ijR R R R R R R∪ = ∪   , (26) 

( ) ( ) ( )2 3 1 2 1 3 1ij ij ijR R R R R R R∪ = ∪   , (27) 

( ) ( ) ( )1 2 3 1 2 1 3ij ij ijR R R R R R R∩ ⊆ ∩   , (28) 

( ) ( ) ( )2 3 1 2 1 3 1ij ij ijR R R R R R R∩ ⊆ ∩   , (29) 

and so we can set an algebraic structures ( ), ,ij ij ijF I , ( )(ij)2 , , , , , , ,0 ,1 , ,
nU

ij ik R R ij ikI I∪ ∩ ⊆   that 

have properties (12)-(18), (24)-(29). 

3. Conclusion and examples
We have defined algebraic structures of finitary relations as a common case of well-known algebraic
structures of binary relations. We have considered the algebraic structures on an underlying set 2

nU

and sometimes called a finitary relation 2
nUR∈  by a (n-uniform) hypergraph. The operation ij  can 

be called the “straightening the edges” or “deleting shared intermediate vertices”. Let us take an 
example. 

Example 1 (algebraic). Let us set { }0 1 2 3, , ,U u u u u= , ( )3

23 232 , ,U I , and 

( ) ( ){ }1 0 3 1 2 0, , , , ,R u u u u u u= . Now we can get
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0 0 1 1 0 2 2 0 3 3

1 0 0 1 1 1 1 2 2 1 3 3
23

2 0 0 2 1 1 2 2 2 2 3 3

3 0 0 3 1 1 3 2 2 3 3 3

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , , ,

, , , , , , , , , , ,

u u u u u u u u u u u u

u u u u u u u u u u u u
I

u u u u u u u u u u u u

u u u u u u u u u u u u

 
 
 =  
 
 
 

, 

( ){ }23 1 2 3, ,R R u u u= , 

23 23R R R = ∅  . 
Despite its simplicity, operation 23  has some interesting applications. In examples 2, 3 we are 

going to denote 3-tuple ( )1 2 3
, ,i i iu u u  as a word 

1 2 3i i iu u u .

Example 2 (feature selection). Let { }1 0 0 1 1 0 1 2 0 1 2 1 1 2 3 1 3 0, , , , ,R u u u u u u u u u u u u u u u u u u=  be a set of 

words, and { }1 0 3fR u u u= , { }(23)
1 3 0fR u u u=  are filters. First, apply the filter fR

{ }23 1 0 3 1 1 3 1 2 3 1 3 3, , ,fR R u u u u u u u u u u u u= . 

Then apply the filter (23)
fR

{ }(23)
23 23 1 0 0 1 1 0 1 2 0 1 3 0, , ,f fR R R u u u u u u u u u u u u=  . 

Example 3 (crossover). Let { }1 0 0 1 1 0 1 2 1 1 3 2, , ,R u u u u u u u u u u u u=  be a population. Let us define the 
evolution operator ( ) 23R R R RΕ = ∪   and start a first step of evolution 

( ) { }1 0 0 1 1 0 1 2 0 1 2 1 1 3 1 1 3 2, , , , ,R u u u u u u u u u u u u u u u u u uΕ = . 

In example 4 we are going to denote 3-tuple ( )1 2 3
, ,i i iu u u  as an implies ( )1 2 3i i iu u u→ → .

Example 4 (AI). Let ( ) ( ){ }1 1 1 1 1 2,R u u u u u u= → → → →  be a base set of AI premises. Let us 

define the semantic closure of R  as [ ] ( )( )23

1

k

k

R R R
∞

=

= ∪ , where 1
23

k kR R R+ =   and 1R R= . By 

definition we have 
[ ] ( ) ( ) ( ) ( ){ }1 1 1 1 1 2 1 2 1 1 2 2, , ,R u u u u u u u u u u u u= → → → → → → → → . 

Note that ( )( ) ( )( )( ) ( )( )1 0 3 1 2 0 1 2 3u u u u u u u u u→ → ∧ → → → → →  is tautology, so the inference

rule ( ) ( ) ( )1 0 3 1 2 0 1 2 3,u u u u u u u u u→ → → → → →ђ  preserves truth.

We also note that ( )( ) ( )( )( ) ( )( )1 0 3 1 2 0 1 2 3u u u u u u u u u→ → ∧ → → → → →  is tautology, too.

It makes perfect sense to use an indicator function { }: 0,1n
R Uχ   for 2

nUR∈ , that is defined as 

( )
( )
( )

1
1

1

1, ,..,
,..,

0, ,..,
n

R n
n

u u R
u u

u u R
χ

 ∈= 
∉

. 

In the case of finite set { }1,.., mU u u= , we can use this function to define a join-vertices logical 

array ( ) { }: 1.. ,nR m false trueψ   for (n-uniform) hypergraph. Let :1..f m U  be a total bijection 

and 2
nUR∈ . We define 

( )
( ) ( )( )
( ) ( )( )1

1 1
1

,.., 1 1 1
1

, ,.., 1
,..,

, ,.., 0n

R nR R
k k n

R n

true f k f k
k k

false f k f k

χ
ψ ψ

χ

− −

− −

 == = 
=

. 

Let us denote { },false true  as D  and a set of logical array defined above as ( )1.. nmD . 
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We also can set a logical algebra that generalized adjacency matrices algebra. In this way we define 
a binary operation ij∗  on ( )1.. nmD  

1 1 1 1 1 1 1 1

1 2 1 2
,.., ,.., ,.., , , ,.., ,.., ,.., ,.., , , ,..,

1
n n i i j n i j j n

m

k k ij k k k k s k k k k k k s k k
s

ψ ψ ψ ψ
− + − +

=

∗ = ∧∨ . 

By our construction semigroups ( )2 ,
nU

ij  and ( ) ( )1.. ,
nm

ij∗D  are isomorphic. 

More interesting is the case of algebraic structures on an underlying set 
1
2

nU
n

∞

=  and operations

from 2
nU  to 2

mU . For example, let us define the operations “gluing edges” g  and “replacing chains” 

r . 

( ) ( ) ( ){ }1 2 1 1 2 0 1 1 0 1 0 2 2,.., , ,.., | ,.., , , ,..,g m n m nR R u u u u u u u u R u u u R− −′ ′ ′ ′= ∃ ∈ ∧ ∈ , 

( ) ( ) ( ){ }1 2 1 1 1 0 1 1 0 1 1 0 1 2,.., , ,.., | ,.., , ,.., ,.., , ,..,r i j n i m j nR R u u u u u i j u u u u R u u u u R− + − +′ ′ ′ ′ ′= ∃ ∃ ∃ ∈ ∧ ∈ . 

For the finitary relation ( ) ( ){ }1 0 3 1 2 0, , , , ,R u u u u u u=  from Example 1 we can get 

( ) ( ){ }(13)
3 0 1 0 2 1, , , , ,R u u u u u u= , 

( ) ( ){ }(13)
1 0 0 1 1 2 2 1, , , , , , ,gR R u u u u u u u u= , 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 0 3 1 0 1 2 1 3 2 0 1 2 3, , , , , , , , , , , , ,rR R u u u u u u u u u u u u u u= . 
It is clear that even in the case of finite set U  we would never make a finite representation for such 

algebraic structures. But in particular cases, maybe we can. This case is of interest. 
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