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Abstract. The article explores the incentive problem of executors of the new products 

development project at the industrial enterprise in continuous time. In the process of 

developing new products, the learning curve effect manifests itself, which leads to a reduction 

in labor intensity, depending on the cumulative volume of production. The project for the new 

products development is considered as a managed hierarchical dynamic system, consisting of a 

project management board (principal) and executors (agents). The interaction of project 

participants is formalized as a hierarchical differential game. To solve the formulated dynamic 

problem of material incentives, the well-known principle of cost compensation was applied. 

The original problem is divided into the task of coordinated incentives and the task of 

coordinated planning. The study showed that the task of coordinated dynamic planning is for 

the principal to determine the optimal planned production volumes in order to minimize the 

labor cost of agents. The initial dynamic problem of material incentives was reduced to the 

optimal control problem. The problem of optimal control with continuous time was solved 

analytically using the Pontryagin maximum principle. The study identifies a condition to 

determine the optimal production volumes for coordination of the interests of the principal and 

agents.  

1. Introduction  

The article explores the incentive problem of executors of the new products development project at the 

industrial enterprise in continuous time. In the process of developing new products, the learning curve 

effect manifests itself, which means that labor time (labor intensity) is reduced to perform repetitive 

manufacturing operations. The project for the development of new products is considered as a 

managed hierarchical dynamic system consisting of the project management (principal) and executors 

(agents). The dynamics of a controlled dynamic production system depends only on the actions of the 

agents, and the principal affects the target function of the agents by choosing the material incentive 

function. The state of the hierarchical dynamic system in each time period depends on its position and 

the actions of the participants in the previous period. Production activity in the project for the 

development of new production is characterized by the diverging interests of the principal and agents, 

which leads to a decrease in the economic efficiency of the entire production system. To find a 

solution of these contradictions is possible by coordinating management mechanisms that encourage 

agents to choose actions that are beneficial to the principal. 
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Dynamic models of the interaction of unequal players are considered in the active systems theory 

[1–2], hierarchical information systems theory [3–5] and dynamic games theory [6–8].  

The dynamic incentives task of agents in terms of the dynamic games theory is called the inverse 

Stackelberg game. A review of reverse Stakelberg games models has been carried out in scientific 

publications [9–12]. In the hierarchical information systems theory [3–5] the dynamic incentives task 

was called the Germeier’s game Г2.  

The theory of active systems [1] develops the approach based on the principle of cost 

compensation. The principal compensates the agent's costs in the case of choosing the optimal planned 

trajectory and does not pay material compensation in other cases. The original problem is divided into 

the task of coordinated incentives and the task of coordinated planning. The task of coordinated 

planning is reduced to the problem of optimal control. The recent study [13] explores the results that 

generalize the theorems in the monograph [1]. 

The hierarchical systems theory [3–5] suggests the approach that used the choice of the principal of 

the program of joint actions with the agent and punishment for deviation from this program. As a 

result, the initial problem is transformed into the optimization problem.  

In the dynamic games theory [7], the principal plan is implemented using trigger strategies. The 

basic idea is that agents agree to follow a certain trajectory and punish any deviated agent. 

The current study formulates and analytically solves the dynamic incentives task of agents in the 

conditions of learning-by-doing within the framework of the approach proposed in the monograph [1]. 

2. Dynamic game task of executors incentives in projects for the development of new production

2.1. The general statement and decision algorithm  of a task of executors incentives in projects for the 

development of new production  

In this dynamic game model there are dynamics of decision making and dynamics of the managed 

system. The inequality of participants is fixed by the moves order, the first move is made by the 

principal. It is assumed that agents are not linked to each other and perform actions independently.  

The incentive problem is formalized dynamic game in positional strategies for two players with 

feedback on management: 
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where pJ is the decision making criteria of principal, aJ is the decision making criteria of agent,   is 

principal discount rate, u(t) is production volume of agent at time point t, p is product price, ))(( tx  is 

incentive function of principal, x(t) is the cumulative production volume, T is the project’s planning 

horizon,  is agent discount rate, ))(),(( tutxС  is the function of the agent's labor costs in the 

production of products (costs at time point t), 0x is the production volume produced by the agent

before starting the project, R is the production volume to be produced by the time point T. 

The function of the agent's labor costs in production (costs at time point t) in monetary terms is 

defined as the product of labor intensity ))t(x(с , production volume u(t) and the cost of one hour rate 

s: 
).t(u))t(x(sс))t(u),t(x(С  (1)



Data Science 

O V Pavlov

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)    211

The change dynamics in labor intensity of products from the cumulative production volume is 

described by different models of the learning curve. The most typical models are power, exponential 

and logistic ones, which are described in the scientific literature [14–17].  

The degree model of the learning curve has the following form: 

.)t(ax))t(x(c b (2) 

where а are costs of the first product production, b is learning index. 

The learning index characterizes the speed of decrease in the unit costs of product with an increase 

in the cumulative production volume. 

Exponential model of the learning curve: 
)t(xek))t(x(c   . 

where  is learning index k ,   are parameters of the exponential model. 

Logistic model of the learning curve: 


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where minc , maxc  are minimum and maximum values of unit costs in product manufacturing,  is 

learning index,  is logistic model parameter. 

To solve the formulated problem of incentives, the principle of cost compensation is applied [1]. 

In accordance with the principle of cost compensation, it is enough for the principal to compensate 

the agent costs to encourage it to choose a planned trajectory: 
))t(u),t(x(С))t(x(  . (3) 

Taking into account (3) and (1), the goal function of the principal is written: 

.maxdt)}t(u))]t(x(sсp{[eJ
T
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Given that the price of part p is a constant value, the maximization of the integral income of the 

principal can be replaced by minimizing the integral labor costs of the agent: 

.mindt))t(u),t(x(СeJ
T
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The solution algorithm consists of dividing the original problem into the task of coordinated 

incentives and the task of coordinated planning. 

1. The task of coordinated dynamic incentives.

The principal chooses a compensatory incentive system, which consists of compensating the

agent’s costs in case that the principal’s optimal planned trajectory is chosen and there are no material 

payments otherwise: 


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

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2. The task of coordinated dynamic planning.

The optimal planned principal trajectory is determined from the solution of the optimal control

problem: 

.mindt))t(u),t(x(СeJ
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.Rx)T(x  0 (8) 

The task of the principal is to select the optimal production volumes of parts opt)t(u  satisfying the 

constraint (6), which transfer the production process (5) from the initial state (7) to the final state (8) 

and minimize the integrated discounted labor costs of the agent (4). 

2.2. Solution of the dynamic production planning problem 

To solve the formulated optimal control problem with continuous time (4)-(8) we apply the Pontryagin 

maximum principle [18]. The direct application of the Pontryagin maximum principle to the 

formulated optimal control problem is impossible, since in this case there is a special control [19]. 

As the principal’s optimality criterion, we consider the criteria of minimizing the integral 

discounted rate of the labor cost function of agent C(t), which is close in economic terms: 

.mint
)t(С

)t(С
eJ

T
t

p  
 d

0




where ])([ln
)(

)(
 tC

tС

tС
is the logarithmic derivative of the labor cost function, which has the economic 

meaning of the rate of labor cost function. 

Statement 1 

For a positive and absolutely continuous function C(t), the maximization (minimization) of the 

following functional

t
)t(С

)t(С
eJ

~ T
t d

0







(9) 

is equivalent to the functional maximizing (minimizing): 

.t)t(СlneJ
T

t d
0


 

(10) 

The proof of the statement is given in the Appendix. 

Taking into account this statement, we take minimization of the total discounted logarithmic 

function of labor costs as the criteria of optimality (10). We substitute the expression for the labor cost 

function (1) into the functional (10): 

.t)]t(u))t(x(sсln[eJ
T

t
p d

0


 

(11) 

To solve the formulated optimal control problem (5)-(8), (11), we apply the Pontryagin maximum 

principle [18]. Hamiltonian function is stated below: 
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where )(t  is an auxiliary variable that satisfies the following conjugate equation: 
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In accordance with the Pontryagin maximum principle, at each point of the optimal trajectory the 

Hamiltonian function reaches its maximum with respect to the control parameters. The maximum of 

the control Hamiltonian is found from the condition: 

.
u

H
0





(12) 

We define the optimal control from the condition (12): 

.
e

)t(u
t

opt







(13) 

The system of conjugate equations can be written as follows: 



Data Science 

O V Pavlov

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)    213
























x

))]}t(x(c{ln[
e

t

e

t

x

t

t









d

d

d

d

(14) 

From the equations of system (14) it follows: 
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The symmetric form of the system (14) taking into account equations (15), (16) will have the form: 
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Using the separation of variables in the second differential equation (17): 
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Find the general solution to the differential equation (18): 

)).((0 txcC (19) 

where 0C is the integration constant. 

The optimal control (13) taking into account (19) takes the following form: 

.
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t
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Based on the obtained condition for optimal control (20), we formulate the following statement. 

Statement 2. 

Taking into account the discounting, the optimal production volumes for any model of the learning 

curve at each time point should be inversely proportional to the labor intensity of the products and 

directly proportional to the discount rate. 

In the case of absence of discounting (discount rate   = 0), the optimal control will be written: 

.
))t(x(cC

)t(u opt

0

1


Based on the obtained conditions for optimal control without discounting, we formulate the 

following statement. 

Statement 3. 

In the case of no discounting, the optimal production volumes for any model of the learning curve at 

each time point should be inversely proportional to the labor intensity of the products. 

Find the optimal control and optimal trajectory for the power model of the learning curve (2). The 

formula (2) can be substituted in the resulting expression for the conjugate variable (19): 

.)t(xC b 1
(21) 

where aCC 01  is the integration constant.

We substitute formula (21) into the differential equation (15): 
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(22) 

The general solution to equation (22) will have the form: 
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We define the integration constants 1C and 2C from the boundary conditions (7) and (8):
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Substituting the constants of integration (24), (25) into formula (23), we find the equation of the 

optimal trajectory of the cumulative production volume: 
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We define the optimal control by substituting the formula (21) into the condition (13) with the 

found expression for 1C  (24): 
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Find the labor cost function (1), taking into account formulas (26) and (27) on the optimal 

trajectory with optimal control: 
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Analyzing (28) we come to the conclusion that under optimal control, the change in the instant

costs function depends only on the discount factor .te 

3. Conclusion

The paper explores the dynamic game task of executor’s incentives in projects for the development of

new production in continuous time.

To solve the formulated problem of incentives, the principle of cost compensation was applied. The 

original task is divided into the task of coordinated incentives and the task of coordinated planning. 

The task of coordinated incentives is as follows. The principal chooses a compensatory incentive 

system, which consists of compensating the agent’s expenses in case of the principal chooses an 

optimal trajectory, or there are no material payments otherwise. 

As a result of the study, a condition for the optimal production volumes determining coordination 

of the interests of the principal and agents was found: the optimal production volumes for any model 

of the learning curve at each time point should be chosen inversely to the labor intensity of the product 

and directly to the discount rate. In the case of absence of discounting: the optimal production volumes 

for any model of the learning curve at each time point should be chosen inversely to the labor intensity 

of the products. 

As a result of analytical problem solving for power model of the learning curve, the following 

formula were obtained: formula for optimal production volumes at each time point, optimal trajectory 

for cumulative production volumes, and formula for agent labor costs at each time point for optimal 

trajectory with optimal control. 

Appendix 

Proof of the statement. 

We integrate the functional (9) by parts: 
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We introduce the function )(tg : 
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Then values of the function at the initial and final moment of time are )0(ln)0( Сg   and 

).(ln)( TСeTg T  Expression (29) takes the form: 
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Case A. Increasing function )t(g . 

The geometric interpretation of the integral ttgS
T

g d)(
0

 is the area of the curvilinear trapezium, 

bounded above by the positive function )(tg , below by the axis of abscissas and by the straight lines 

t=0 and t=T. The rectangle area bounded above by the straight line )()( Tgtg  , below by the axis of 

abscissas and by the straight lines 0t  and Tt   can be defined on the one hand through the integral 

and on the other hand as the multiplication of length by height: 
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Similarly, the rectangle area bounded above by the line )0()( gtg  , below by the axis of abscissas 

and by the straight lines 0t  and Tt   can be found: 
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From the formulas (31) and (32) follows that: 
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Then the functional (30), taking into account formulas (33) and (34), can be written:
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The integral 0
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The formula ttg
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trapezium gS , since 1 . In the case of an increasing function, the condition is satisfied )0()( gTg  . 

The expression 0

0

1
d)]0(-)([

1
T

T

S
T

tgTg
T

  is a positive value and calculates the area of the squared 

rectangle 0TS . 

The sum of the areas of the transformed curvilinear trapezium gS and the rectangle 0
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Since 1 is a constant factor, the maximization of the functional ttg
T

d)(
0

1  will be equivalent to 

maximizing of the functional ttСettg
T

t
T

d)(lnd)(
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  . Thus, the statement is proved.

Case B. Decreasing function )t(g . 

In the case of a decreasing function, the condition is satisfied )(g)T(g 0 . The formula (35) will 

have the form: 
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Option 1: the conditions are met 
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In this case, the difference of the areas of the transformed curvilinear trapezium gS and the 

rectangle 0

1
TS

T
 can be defined as the area of the curvilinear trapezium, bounded above by the positive 

function )(2 tg  ( 2 is the constant factor), below by the axis of abscissas and the straight lines 0t  
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Option 3: the conditions are met 
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In this case, the difference of the areas of the transformed curvilinear trapezium gS and the 

rectangle TS
T

0

1
 can be defined as the difference of the areas of two curvilinear triangles. 

The area of the first curvilinear triangle is bounded above by the function )(tg , below by the 

straight line )(g
T

)t(g 0
1

 and by the straight lines 0t  and t  (abscissa of the intersection point

of the function )(tg  and the straight line )0(
1

)( g
T

tg  ). The area of the second curvilinear triangle 

is bounded above by a straight line )0(
1

)( g
T

tg  , below by the function )(tg  and by straight lines 

t and Tt  . 

The areas difference can be calculated: )0(-d)(d)](-)0(
1

[d)]0(
1

-)([
00

gttgttgg
T

tg
T

tg
TT

  




.

Since const)(g 0 , the minimization of this expression will be equivalent to the minimization of the 

functional ttСettg
T

t
T

d)(lnd)(
00


  . The statement is proved.
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