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Abstract. Every year computer networks become more complex, which directly affects the 
provision of a high level of information security. Different commercial services, critical 
systems, and information resources prevailing in such networks are profitable targets for 
terrorists, cyber-spies, and criminals. The consequences range from the theft of strategic, 
highly valued intellectual property and direct financial losses to significant damages to a brand 
and customer trust. Attackers have the advantage in complex computer networks – it is easier 
to hide their tracks. The detection and identification of security incidents are the most 
important and difficult tasks. It is required to detect security incidents as soon as possible, to 
analyze and respond to them correctly, so as not to complicate the work of the enterprise 
computer network. The difficulty is that different event sources offer different data formats or 
can duplicate events. In addition, some events do not indicate any problems on their own, but 
their sequence may indicate the presence of a security incident. All collection processes of 
security events must be performed in real-time, which means streaming data processing. 

1. Introduction 
Recently, computer networks tend to develop rapidly. They become larger and more complex, but they 
still remain profitable targets for various intruders – criminals, cyber-spies, and even terrorists. 
Commercial services, critical systems, and information resources are at risk. The consequences can be 
different, ranging from the theft of strategically important information, highly estimated intellectual 
property, and direct financial losses to significant damages to a brand and customer trust. 

The traditional approach to cybersecurity is based on the idea that it is necessary to create a special 
trustful environment for networks and data, that is, to organize them in such a way as to reduce access 
to them from the outside, but not to prevent them from performing their functions correctly. This will 
help to discover and eliminate vulnerabilities before the intruder will find them. Such an approach is 
no longer effective in modern computer networks with constantly changing threat scenarios. Attacks 
can be organized anytime and anywhere, and due to the complexity of networks, it is easier for the 
attackers to hide their tracks. In theory, the specialists should be ready for all possible variants of 
attacks, but, in practice, it is impossible. Thus, to protect the systems, it is necessary to collect the data 
from the entire network, understand how it works, detect and identify threats, and take appropriate 
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actions as fast as possible. Certainly, there is a huge amount of solutions to perform these tasks, but 
not all of them are free, able to interact with the most of available sources of security events and to 
work in the highly distributed networks. 

A Network-wide Cyber Situational Awareness (NwCSA) has been introduced in [1] to assist a 
network security administrator with network security. The challenges include the overload of raw data, 
low speed of reaction, and a lack of context and unified view on a network. The framework leverages 
a distributed data stream processing system and methods for real-time big data processing. The paper 
describes only the concept of such system. 

A cyber threat platform for real-time detection and visualization of cyber threats OwlSight is 
presented in [2]. The platform is composed by several building blocks and it is able to collect huge 
amounts of data from multiple sources, prepare and analyze the data and present the findings through a 
set of insightful dashboards. The platform use Cassandra for data storage and Spark for data 
processing. Authors describe some real usage scenarios, but do not provide results of performance 
testing of solutions. 

In [3] authors introduce an architecture dedicated to security monitoring of network traffic in local 
enterprise networks. The application domain of the system is network intrusion detection and 
prevention. Other anomalies are not considered. This architecture integrates two systems, one 
dedicated to scalable distributed data storage and management and the other dedicated to data 
exploitation. Several well-known big data framework are compared for data processing. Spark and 
Shark appear to be the best performers in all tests.  

The paper [4] presents a prototype of Security Information and Event Management (SIEM). The 
system uses a combination of three different approaches for security analysis: misuse detection, query-
based analytics and anomaly detection. Authors propose to use anomaly detection in a combination 
with signatures and queries, applied on the same data, rather than as a full replacement for misuse 
detection. In this case, the majority of attacks will be captured with misuse detection, while anomaly 
detection will highlight previously unknown behaviour or attacks. The main drawback of the system is 
the use of expensive in-memory data storage (SAP HANA). Also anomaly detection methods are 
tested on obsolete the KDD 1999 dataset. 

In [5] authors compare several methods for detecting anomalies on UNSW-NB15 dataset. They test 
correlation analysis, linear discriminant analysis and seven well known classification algorithms 
within the bigdata tool Apache Spark. Data collection methods are not covered in the paper. 

In this paper, we describe the concept of a system for collection and primary analysis of security 
events and inсidents in large corporate networks. 

2. Selection and review of software tools 
The main requirements for software tools are the open source, the ability to function in the distributed 
systems, and the support of streaming data processing. Since a large amount of heterogeneous data is 
formed in real-time, which is required to be converted to a general form, processed and analyzed, it 
should be considered that the selected tools must support the work with streaming data. Streaming data 
mean the data that continuously provided by a variety of sources, from which small batches are 
formed. The sources of such data are authentication systems, active network devices, IDS/IPS 
(Intrusion Detection Systems/Intrusion Prevention Systems), event logs of servers, antiviruses, 
vulnerability scanners, and other security and management systems.  

Apache Spark [5] was selected as a framework for processing streaming data. It works much faster 
than Hadoop, supports cluster mode, and it is compatible with other Apache products. It has well-
structured documentation, and it is quite popular among developers, which means there are a lot of 
articles, tutorials, and manuals about it. Spark can work in a Hadoop environment managed by YARN. 
Spark provides API for Scala, Java, Python, R languages and supports different distributed storage 
systems – HDFS, Cassandra, OpenStack Swift, NoSQL-DBMS, Amazon S3, and others. In addition, 
Spark includes the following components: Spark SQL for processing SQL queries, Spark Streaming 
for streaming data processing, Spark MLib for machine learning, and Spark GraphX for working with 
graphs. 



Data Science 
E V Chernova, P N Polezhaev, A E Shukhman, Yu A Ushakov, I P Bolodurina and N F Bakhareva 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)         235 

Apache Spark has an extension to its basic API – Spark Streaming. It does not process entire 
streams, but divides them into small batches. It is called DStream (Discretized Stream), which is a 
sequence of RDDs (Resilient Distributed Datasets). They can be processed in parallel, including 
computations based on sliding windows. RDD supports two types of operations: transformations and 
actions. The result of a transformation is a new RDD; the result of an action is a specific value. 
Transformations are not executed immediately, that is, Spark remembers transformations over 
particular data and executes them, only when an action is called (lazy execution). Such an approach 
improves the efficiency of Spark. In addition to RDD, there is a DataSet in Spark. It differs by using 
the optimizer that chooses the most efficient way of computing the result. The optimizer is mainly 
used for SQL queries. 

A Spark application represents a set of processes executed in a cluster and controlled by 
SparkContext object, which called a driver, created in the main program [4]. In particular, 
SparkContext can connect to cluster dispatchers of different types that distribute resources between 
applications. After connection, Spark gets available executors on the cluster nodes and sends the code 
to the executors, and, finally, SparkContext assigns tasks to the executors to perform them. 

In addition, Spark has disadvantages. Firstly, it is the “inheritance” of batch processing – non-
constant network loads during data loading and processing. Therefore, it is necessary to set up 
restrictions on the density of input stream, since Spark does not have an efficient tool for tracking it. 
Secondly, it cannot recover clusters after failures. 

Additionally, the Apache Kafka framework can be used to solve these problems. It is able to create 
real-time data pipelines and streaming applications [6]. Kafka provides the designing of a distributed 
server for message queues. Thus, a data stream is distributed over several servers in a cluster providing 
high scalability. The risk of data loss is reduced due to such replicated and persistent storage. 

The main abstraction of Kafka is a topic that is a category or feed name used to publish records to 
it. Topics usually have several subscribers that are consumers, which subscribe to the data written to 
the topics. Kafka provides a partitioned log for each topic. Each partition represents an ordered, 
immutable sequence of records, which are constantly added to a commit log. Each record in the 
partition has a unique sequential number that is called offset. It identifies each record in the partition. 

The servers of Kafka clusters store the distributed commit logs of the partitions. Each server 
processes requests for shared access to partitions. In order to provide fault-tolerance, partitions are 
replicated to a configurable number of servers. A partition has a single server that is called leader and 
zero or more servers which function as followers. Leader processes all requests for reading and writing 
partitions, and followers passively replicate the leader. One of the followers will be elected as a new 
leader if the current leader fails. Each Kafka server functions as a leader for some of its own partitions, 
and as a follower for others, therefore, the load in the cluster is well balanced.  

Kafka Streams is a client library for parallel processing and analyzing the input and output data 
stored in Kafka. It can be used for computations described as a processing topology. 

3. Organization of data transfer and storage 
After performing different operations, it is necessary to store the obtained results. Apache Cassandra 
[7] was selected for that as a NoSQL database management system. Cassandra has high scalability 
and throughput for reading and writing operations, and it supports replications. It does not work with 
SQL, but it has a similar language called CQL (Cassandra Query Language). A big advantage of 
Cassandra is the ability to create reliable and fault-tolerant clusters. In addition, joining new 
Cassandra instances to the cluster is very simple. Clients can access any cluster node for reading and 
writing because all of them are equal, and data are consistent. 

Raw data enter the system from different sources like network devices, antivirus programs, 
firewalls, IDS/IPS. For receiving data from such sources, there is Kafka Connect [8], which is a tool 
for scalable data transfer between Apache Kafka and other systems. It can be used to transfer large 
volumes of data to or from Kafka. Kafka Connect can get the entire databases or collect data from 
different application servers and put them into Kafka partitions. In addition, the export jobs can 
transfer data from Kafka partitions to the external storages and query systems, or to the batch systems 



Data Science 
E V Chernova, P N Polezhaev, A E Shukhman, Yu A Ushakov, I P Bolodurina and N F Bakhareva 

V International Conference on "Information Technology and Nanotechnology" (ITNT-2019)         236 

for offline analysis. Since the sources of data are different, for each of them, the separate Kafka 
partition should be created. 

Connector developed by DataMountaineer simplifies writing data to a Cassandra database [9]. It 
converts values from Kafka Connect SinkRecords to JSON, and then asynchronously inserts records 
into Cassandra tables. The connector can create secure connections over SSL. The selection of fields 
and partition management are handled by KCQL (Kafka Connect Query Language). 

The Spark Cassandra Connector library [10] was selected to implement a connection between 
Spark and Cassandra. For data transferring, it is necessary to create StreamingContext and DStream 
that will connect to nodes. The SparkConf object is used to configure StreamingContext. It is 
necessary to set up the connection host, user name, and password for a Cassandra user. Any node of a 
Cassandra cluster can be a connection host. The driver extracts cluster topology from the connection 
host and can switch to the closest node in the same data center. Whenever any method is called that 
requires access to Cassandra, the options from the SparkConf object are used to create a new 
connection or to use an already opened one from the pool of connections. In addition, the Spark 
Cassandra Connector can connect to several Cassandra clusters. 

4. Correlation analysis 
Events are consumed by application based on Spark Streaming. They have their own place in a 
hierarchy, depending on the way of receiving events and their features (Figure 1). There are three large 
classes of events: the events from SNMP, the events from Syslog, and others. Classes are divided into 
subclasses, depending on the common features of events. Subclasses, in turn, can be divided again, 
etc.  

The Spark Streaming Application takes each received Kafka partition, performs filtering, converts 
the data into classes of the hierarchy and saves them, after that a correlation analysis is performed. 

At the next step, it is necessary to create rules for correlation analysis. There are many ways to 
organize them. In our system, we use two of them – patterns and requests. A pattern is a set of rules 
with some fields, which are filled in with the data from events. A request is similar to a pattern, but it 
works with data streams. It can join, group by, filter, deduplicate, sort data, or pass events through 
sliding windows. The window saves events to aggregate, join, and match them against particular 
patterns or subqueries. It defines which subset of events should be saved. For example, the data 
window saves the last N events, and the time window – the events during the last N seconds. In 
addition, in a pattern or a request, the reaction can be defined, that is, the action which should be 
performed when the data match the conditions. The simplest reaction is a notification of an 
administrator about suspicious activity, for example, by an e-mail message. However, there are more 
radical opportunities such as port closing, launching programs or running scripts (for example, to 
shape the traffic during DDoS attacks). 

 
Figure 1. The hierarchy of events. 

 
The pattern fields can be different, for example, such as the event category, the IP address of its 

source, the type of source device, the port number, the time thresholds, etc. The selection of the fields 
required for the analysis is based on available data. For example, an SNMP protocol data unit includes 
IP and UDP headers, protocol version, password, type of unit, request id, error status, error index, and 
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variable bindings. A Syslog message consists of a header, structured-data, and a text. The header 
contains information on facility, severity, protocol version of Syslog, timestamp, host name, 
application name, system process id, and message type. Knowing how the messages of these protocols 
are formed, it is possible to extract necessary fields using regular expressions. For each event type, a 
special regular expression is used, which captures the necessary data from the raw message of the 
event source. The following method creates a new event.  

create event ExampleEvent: Event { 
severity:  " severitygroup", 
datetime:  " datetimegroup", 
hostname:  " hostnamegroup",  
appname:  " appnamegroup",   
type:  " typegroup",  
message: " messagegroup",  
} 
Here double quotes indicate the names of groups from the regular expression. 
In addition to the usual method of event creation, there are more intended to the events of certain 

types. It is for the convenience of the users.
create event SyslogEvent: Event { 
facility:  " facilitygroup", 
severity:  " severitygroup",  
datetime:  " datetimegroup",  
hostname:  " hostnamegroup",  
appname:  " appnamegroup",   
type:  " typegroup",  
message: " messagegroup"  
} 

create event SNMPEvent: Event { 
destination_address:"destination_addressgroup", 
source_address:  " source_addressgroup",  
type_of_service:  " type_of_servicegroup",  
sourse_port:  " sourse_portgroup",  
destination_port:  " destination_portgroup",  
pdu-type:  " pdu-typegroup",  
error-status:  " error-statusgroup"  
} 

The rules look similar to SQL queries. Firstly, the keyword “select” is used in the begging of the 
rule. Then the selection from the required group of events is specified after the keyword “from”. 
According to SQL principles, “where” can be used to specify a condition. All logical operations 
(“and”, “or”, “not”) should be supported. In addition, it is possible to specify the time duration within 
the events should happen, or the time interval between them (“timer”). Then, it is possible to use 
grouping (“groupby”) or sorting (“orderby”). After that, the reaction is specified (“then” with “msg” or 
“block”). 

The following example is the selection of the alert time, the host IP address, the severity and the 
category of all incidents from the pattern, except for those which source IP address is “192.168.100” 
or “192.168.1.101”, grouped by source IP address: 

select alert_time, host_ip, severity, category from pattern 
[pattern eventA=antivirus -> eventB=scanning_hosts (eventA.src_ip = eventB.host_ip)  
where timer within 60] 
where src_ip not  “192.168.1.100” or  not “192.168.1.101”  
groupby src_ip. 
The pattern is specified in square brackets. It starts with the keyword “pattern”, then two events 

(“eventA” and “eventB”) are specified with their types after the equal sign “=”. The sign “->” indicates 
that the events are sequential. Further, the fields of these events are specified in parentheses. In this 
example, “src_ip” of “eventA” should be equal to “host_ip” of “eventB”. This condition should be 
satisfied within 60 seconds, so the events will be identified as an incident. In addition, it is possible to 
use a previously saved pattern by specifying its name in the square brackets. The Web interface of the 
system should has the opportunities for editing and adding correlation rules. 

5. Concept of a system for collection and primary analysis of security events and inсidents in 
large corporate networks  
Firstly, it is necessary to collect as much data as possible about the security events in computer 
networks. As it was already mentioned above, data are collected using the Syslog and SNMP 
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protocols. Information about other events that they do not cover can be collected using special tools, 
for example, IDS Suricata. All data are converted into JSON format. Tools used for data transmission 
support this format. 

The SNMP agents collect information on devices and send it to the SNMP server (Figure 2). In 
addition, there are two ways for transmission of the collected information: the request-response and 
the trap. In the second case, the agent unilaterally sends messages to the server. 

 
Figure 2. The interaction between the SNMP 

server and the agents. 

 
Figure 3. The Syslog data collection using 

rsyslog servers.
 
The data obtained using the Syslog protocol are collected by rsyslog servers (Figure 3). HaProxy is 

used for load balancing and availability. In order for the rsyslog server to transmit data to the Kafka 
servers, it is necessary to install the special plugin omkafka and to change the configuration file 
“rsyslog.conf” by adding the template for converting messages from Syslog to JSON format [11]. 

Information from the sources collected by Suricata is transmitted to the database using Kafka [12] 
(Figure 4). For each type of event source, Kafka servers should have the separate partition, which 
processes events of a particular source in parallel with other partitions (in this case, “sur-topic” for 
Suricata, “rsl-topic” for Syslog, and “snmp-topic” for SNMP). All received raw events in JSON format 
are stored in the database, from which they are extracted by the Spark application. It converts, filters, 
and aggregates events, after that it performs the correlation analysis. The correlation rules are loaded 
from separate storage. All the results are saved in a separate database. If incidents are detected, the 
reaction module, according to the rules, alerts the administrator or blocks the malware activity on 
network devices or hosts. The Web interface of the system should provide many opportunities for 
users including authorization, generation and viewing of reports, editing and adding correlation rules. 

 
Figure 4. The architecture of the system for the collection and primary analysis of security events and 

incidents in the large corporate networks. 
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6. Experiments 
The test bed was assembled to check the efficiency of the proposed approach and measure its 
performance parameters. Figure 5 shows the logical scheme of the test bed and reveals some details 
about the physical part of the infrastructure and its parameters. 

The data were generated by IDS Suricata installed on two servers, which were attacked by 
malicious traffic from the system based on the Metasploit Framework. Thus, the accuracy of the IDS 
responses and the performance of storing data in Cassandra were simultaneously checked. For stress-
testing, the logging details were chosen as the most verbosity, and the events were described in JSON 
format in the size of 20-22 Kb. 

We used a private cloud based on OpenNebula 5.4.6 and 6x Intel Xeon X5670 48 Gb RAM servers 
for the experiments. Virtual machines were created using KVM. Their virtual disks used the write-
back policy of local caching. Physical disks inside the nodes were connected via iSCSI to the SAN 
based on OpenMediaVault, where RAID-Z was configured on the ZFS system with the cache on 
SSDs. SAN network was 2x10GbE per node (2 nodes), the MTU was set to 9000. 

The volume of generated data is 81958 poorly structured events in a mixed text/JSON format 
(Syslog) with the total size of 1703 Gb. The primary data were being saved in a single input table with 
which Spark worked later to structure them. That data were being written back to Cassandra to 
another keyspace. The structure of the data was generated in advance based on a preliminary analysis 
of the raw data fields. 
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Figure 5. The architecture of the test bed. 

 
Figure 6. The write throughput for experiments. 
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Each experiment started with a clean system with removed data and cleared caches. We measured 
the performance of write throughput of the system with different values of replication factor for 
keyspace, partition batch size, and chunk size for Cassandra connector. Data were saved to volume 
mounted as “/var/lib/cassandra”. It was used as a storage, but in some experiments, additionally, we 
used the directly mounted NFS disks to test common cases. In order to compare the performance with 
the traditional approach for data storage, the series of experiments were conducted on the same virtual 
nodes but using PostgreSQL as a data storage. The first series of experiments (with Cassandra) used 
the text format for all fields, the second one (with PostgreSQL) – JSONB for the data produced in this 
format. In addition, both volume and NFS disks were used as storage. The results are shown in Table 1 
and in Figure 6. 

The left graph of Figure 6 shows the average throughput of successful writing requests of large 
(>20Kb) rows for all experiments from Table 1. The right graph is the distribution histogram for 11 
buckets of the write throughput aggregated over all experiments. Aggregated results are presented 
separately for experiments with Cassandra and PostgreSQL. According to this graph, there is a 
noticeable difference in distributions – PostgreSQL has a higher rate of requests with high throughput. 
In Figure 6, we use big-event/s units to distinguish the idea of a classic event for security system 
(several hundreds of bytes) from the full description of the security event, especially generated by 
IDS. 
 

Table 1. The results of experiments. 
Experiment 

title 
Storage engine Replication 

factor 
Batch 
size 

Chunk 
size 

Number of  
parallel 

processes 

Average 
write 

throughput, 
events/s 

Average 
write 

throughput, 
Mbit/s 

Cassandra-1 Cassandra 
over volume 

2 5 3 2 284 50.7 

Cassandra-2 Cassandra 
over volume  

1 5 3 2 286.1 47.9 

Cassandra-3 Cassandra 
over volume  

1 5 3 1 133.9 23.9 

Cassandra-4 Cassandra 
over volume  

1 5 3 3 413.3 73.8 

Cassandra-5 Cassandra 
over volume 

2 5 4 1 115.3 20.6 

Cassandra-6 Cassandra 
over volume 

2 5 3 3 178.8 31.9 

Cassandra-7 Cassandra 
over volume 

1 3 2 2 88.4 15.8 

Cassandra-8 Cassandra 
over volume 

2 3 2 2 100.9 18 

Cassandra-9 Cassandra 
over NFS 

1 3 2 2 232 41.4 

Postgres-1 PostgreSQL 
over volume 

2 - - 1 753.7 134.6 

Postgres-2 PostgreSQL 
over NFS  

2 - - 1 510.1 91.1 

Postgres-3 PostgreSQL 
over volume 
and JSONB 
fields 

2 - - 1 552.8 98.7 

Postgres-4 PostgreSQL 
over NFS and 
JSONB fields 

2 - - 1 422.1 75.4 

The experiments, which used a volume, showed greater performance due to more optimal caching 
and file system operation than the experiments with data storage based on NFS on the same server. 
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The number of replicas for Cassandra affects the write throughput less than the number of parallel 
writing processes. The batch and chunk sizes affect more due to the shorter transactions of the 
connector. At the same time, PostgreSQL showed significantly better performance, even when using 
JSONB type to store the part of data fields. However, the data integrity and consistency are guaranteed 
by the relational model of PostgreSQL, and replications are configured several times more flexible. 

7. Conclusion 
Thus, we proposed the concept of a distributed system for collection and primary analysis of security 
events and incidents in the networks. It is able to extract events from different sources in the entire 
network, process them, and output results in a convenient format. The system works with real-time 
streaming data, which is surely its main advantage. Such a solution is suitable for large corporate 
networks, and due to the high scalability of its components, it can work with big data.  

In the future, the functions of the system can be extended by new types of analysis, optimization, 
and by adding as many event sources as possible. 
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