
OO-logic: a Successor of F-logic

Jürgen Angele1 and Kevin Angele23

1 adesso, Competence Center Artificial Intelligence
juergen.angele@adesso.de

http://adesso.de
2 Semantic Technology Institute Innsbruck

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
kevin.angele@sti2.at

http://sti2.at
3 Onlim GmbH, Telfs, Austria

http://onlim.com

Abstract. Object oriented logic (abbreviated: OO-logic) combines the
advantages of conceptual modelling that comes from object-oriented frame-
based languages with the declarative style, compact and simple syntax,
and the well defined semantics of a logic-based language. OO-logic sup-
ports typing, meta-reasoning, complex objects, properties, classes, inher-
itance, rules, queries, modularization, and scoped inference. In this paper
we describe the capabilities of knowledge representation systems based
on OO-logic and illustrate the use of this logic for ontology specification.
OO-logic is a successor of F-logic. It incorporates the experience of a
decade of using F-logic in real life applications. OO-logic simplifies the
syntax of F-logic and has its focus on rule based reasoning with large
sets of data (billions of triples).

Keywords: Rule language · Conceptual Modelling · F-logic · Ontology
Language.

1 Introduction

A conceptual model (or an ontology) is an abstract, declarative description of
the information for an application domain. It includes the relevant vocabulary,
constraints on the valid states of the information, and the ways to draw infer-
ences from that information. As applications grew in sophistication, computing
power increased and our knowledge of algorithms for query processing enriched,
the use of rule-based languages for processing information has become more and
more attractive. A further push came from the Semantic Web, which increased
the awareness of the need for logic-based languages for processing ontologies and
other distributed knowledge on the Web. This awareness led W3C to create a
working group that was chartered with the creation of a Rule Interchange Format

Copyright 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

http://adesso.de
http://sti2.at
http://onlim.com


(RIF) [9] for Web-enabled applications written in rule-based languages. Datalog
[1] is the grandfather of all database rule languages. It has a model-theoretic
semantics, can be efficiently implemented, and is reasonably expressive. How-
ever, it does not support function symbols, which are important for representing
objects, and it is a poor choice as a modelling language, as it does not provide
different syntaxes for different semantic concepts. F-logic (or Frame Logic) [3,11]
has emerged as a popular extension that provides negation, function symbols,
high-level modelling constructs, and frame-based syntax. OO-logic simplifies the
syntax of F-logic and has its focus on rule based reasoning with large sets of
data (billions of triples). The simplification of the language reflects the experi-
ence in various industrial projects. This simplified subset is what users really
understood and what they really used in those past projects. This paper takes
a view of OO-logic as an ontology modelling language as well as a language for
building applications that use these ontologies. The ability to span both sides
of the engineering process, ontologies and applications, is a big advantage of
OO-logic.

In the second section (section 2) we will give a short introduction to OO-logic
including the semantics and the implementation of the language. Afterwards in
section 3 we compare it to other rule languages and finally in section 4 a first
industrial use case is presented.

2 A brief introduction to OO-logic

OO-logic is an object-oriented language and ontologies are modelled in this lan-
guage in an object-oriented style. One starts with class hierarchies, proceeds
with type specifications, defines the relationships among classes and objects us-
ing rules, and finally populates the classes with concrete objects. The first part
of this example is a small ontology.

The last line of Listing 1 contains a query (1) to the object base. It inquires
the sons of Abraham and will return the answer ?Y = Isaac.

Object names and variable names Object names and variable names, also
called id-terms, are the basic syntactical elements of OO-logic. To distinguish
object names from variable names, the later are prefixed with a ?-sign. Examples
of object names are Abraham, Man, father, and of variable names are ?X, ?Y.
Complex id-terms are created from function symbols and other id-terms as usual
in predicate logic: couple(Abraham, Sarah), f(?X).

Class hierarchies Class hierarchies are defined with the help of isa-OO-atoms
and subclass-OO-atoms. An isa-OO-atom of the form o:c states that an object
o is a member of class c. A subclass-OO-atom of the form sc::cl says that the
class sc is a subclass of the class cl. In our example it is stated that Man is a
sub-class of class Person and Abraham is an instance of class Man. In contrast to
other object-oriented languages where an object can be an instance of exactly



/* class hierarchy */
Woman::Person. // every woman is a person
Man::Person. // every man is a person
Person[properties: {father,son}]. // a person has properties father and son
father[range: Man]. // property father has values which are men
father[minCardinality:1, maxCaridnality:1]. // everybody has exactly one father
son[range: Man]. // property son has values which are men

/* rules consisting of a rule head and a rule body */
rule1: ?X[son: ?Y] // if ?Y is a man and ?Y has father ?X

:- ?Y:Man, ?Y[father: ?X]. // then ?X has son ?Y

/* facts */
Abraham:Man. // Abraham is a man
Isaac:Man. // Isaac is a man
Isaac[father: Abraham]. // Isaacs father is Abraham

/* query */
?- Abraham[son: ?Y]. // give me all sons of Abraham (1)

Listing 1: A small ontology in OO-logic

one most specific class (e.g. [12]), OO-logic permits to be an instance in several,
possibly incomparable, most specific classes. Likewise, a class can have several
incomparable most specific super-classes. Thus, the class hierarchy is a directed
acyclic graph.

Properties Application of a property to an object is specified using data-OO-
atoms. A remarkable feature of OO-logic is that properties are also denoted by
objects and can be handled like regular objects without any special language
support. For instance, in Listing 1 the property names father and son are
object names just like Isaac and Abraham. A property can have multiple values.
Properties are inherited by sub-classes and instances.

Variables Variables are permitted at all positions in isa-, subclass-, and data-
OO-atoms, so objects, properties, and classes are represented and queried uni-
formly using the same language facilities. In this way, OO-logic naturally sup-
ports the meta-information facility.

Signatures In contrast to F-logic which provides a sophisticated schema mod-
elling language in OO-logic meta modelling is used. This means that classes and
properties itself are seen as objects and we can have properties for these objects
as well. This is the main difference to F-logic. In our previous example we ex-
pressed that class Person has properties son and father. For property father

we stated that the range is Man. Property father must have at least one value
(minCardinality = 1). Meta modelling allows to add various information to such
properties.



Predicate Symbols Experience shows that it is convenient to be able to use
predicates alongside objects. In OO-logic, predicate symbols are used in the
same way as in other deductive languages, e.g., in Datalog. A predicate formula is
constructed out of a predicate symbol followed by one or more id-terms separated
by commas and included in parentheses. Such a formula is called a P-atom. In
the following some P-atoms are shown.

married(Isaac,Rebekah).

male(Jacob).

Built-ins OO-logic supports built-ins which define procedural attachments that
are seamlessly embedded into OO-Logic. Usually a built-in represents an infinite
relation. Built-ins are always preceded by an ” “ (underscore). E.g. adding two
numbers to a third can be considered as an infinite relation between 3 numbers:

_plus(?X,?Y,?Z)

Dependent on two of the three arguments an algorithm behind the built-in
computes the third argument. OO-Logic provides among others all methods of
the Java packages Math and String as built-ins.

Aggregations Aggregations are special built-ins. In contrast to ordinary built-
ins they have a whole set of values as input and generate output values dependent
on the input. In newer logic like F-logic a special syntax has been introduced for
such aggregations:

?N := count{?X | ?X:Person}

This expression means: count all instances of class Person and assign this
number to variable ?N.

Such aggregation expressions can also have a grouping variable. This means
that the results are grouped according to the values of the grouping variable ?G:

r: numberOfPersons(?G,?N) :-

?N := count{?X [?G] | ?X:Person, ?X[hasAge: ?G]}.

This rule determines for all occurring ages the number of persons with that
age. As an extension to F-logic whole tuples are allowed here in the variable and
grouping positions.

Path expressions Path expressions are a standard feature in most object-
oriented languages. In OO-logic, a path expression of the form obj.expr denotes
the set of objects {a1,a2,...}, such that obj[expr: {a1,a2,...}] is true.
Here are some path expressions and the sets of objects they refer to in our
example (Listing 1).

Abraham.son {Isaac}

Isaac.father.son {Isaac}



Rules Rules are one of the best known technologies for building applications
around ontologies. We already have seen examples of rules in Listing 1. In gen-
eral, a rule is an expression of the form head :- body, where the head of the
rule is a Boolean combination of OO-molecules and the body is a Boolean combi-
nation of OO-molecules or negated OO-molecules. Conjunctions are represented
using commas. Disjunction in the body is represented by semicolons. Molecules
may contain variables, and all variables are implicitly ∀-quantified outside of
the rule. Variables can be anonym like ? . Using an anonymous variable in a
rule means that the value which instantiates the variable does not matter. Rules
in OO-logic have a logical semantics based on the principles developed in the
context of logic programming and deductive databases. Consider the following
rule from Listing 1:

rule1: ?X[son: ?Y] :- ?Y:Man, ?Y[father: ?X].

Scoped Inference: Modularization and Integration The concept of scoped
inference [8,10] is central to modularization and integration of knowledge. It was
first proposed in TRIPLE [13] and FLORA-2 [15]. The concept of a module is
well known in software engineering, and it is equally important in knowledge
engineering. It is especially important for representing distributed knowledge,
such as ontologies scattered over the Web, since rules and concepts that belong
to different ontologies may interact in subtle and unintended ways. The basic
idea is that a knowledge base is a collection of scopes of inference or modules.
Each module is a collection of rules and facts. The notion of a rule is extended
as follows. As before, it is a statement of the form

Head :- Body.

Predicates and molecules in a rule can optionally be labeled with module
references like this: pred-or-molecule@module-name. A subformula of the form
L@N inside body or a rule is a query to module N, which asks whether L is implied
by the knowledge base that resides in module N. For instance, some data source,
gendata, may provide information about parents of various individuals. One
may not be able to (or may not want to) insert new rules into that data source
in order to preserve the integrity of that data. However, it is possible to create
a different module, say mygenealogy, which reference the information in the
aforesaid data source. In the following we see queries for information in those
two different modules:

?- ?X[parent: ?Y]@gendata.

?- ?X[parent: ?Y]@mygenealogy.

Module names can be arbitrary identifiers. As an extension to F-logic variable
names are allowed in module positions as well. Besides modularization, the con-
cept of a module is a potent vehicle for integration of and reasoning about
ontologies that reside at different sources. If one just unions the rules and the
facts found at the sources of interest, as implied by the import mechanism of



the OWL language, the rules may contradict each other or have subtle and un-
intended interactions. In contrast, if different sources are treated as separate
modules, one can distinguish the information defined at the different sources
and then specify the appropriate integration rules. These rules may give prefer-
ence to some sources, partially or completely disregard information supplied by
others, or clearly flag conflicting information.

Special syntax For convenience reasons OO-logic provides a special syntax for
comparisons and for mathematical expressions:

r0: ?X:\todo{blank?} YoungPeople :- ?X[age: ?Z], ?Z < 20.

r1: ?X: Teenager :- ?X[age: ?Z], 13 <= ?Z < 20.

An assignment of the value a mathematical expression is given in the follow-
ing way:

r: ?X[a: ?Y] :- ?X[b: ?Z], ?Y := (?Z+5)*3.

These mathematical expressions allow besides the basic arithmetical opera-
tions also functions like sin, cos, sqrt, etc.

Implementation of OO-logic semantics OO-logic is implemented in the
system sem.reasoner, which is a direct successor of OntoBroker [2]. Very similar
algorithms as in OntoBroker are used for reasoning. sem.reasoner uses its own
relational deductive engine. sem.reasoner’s main inference mode is bottom-up,
but it includes several enhancements inspired by top-down inference, such as
optimized, embedded Magic Sets [5].

OO-atom Predicate
A::B subclass(A,B)
o:C member(o,C)

o[A: b] value(o,A, b)
p(b1,.,bn) p(b1,.,bn)
A::B@M subclass(A,B,M)
o:C@M member(o,C,M)

o[A: b]@M value(o,A,b,M)
Table 1. Transformation of OO-logic atoms into predicate notation

The main ideas of the actual translation from OO-logic into the relational
syntax are as follows: First, molecular expressions are replaced by equivalent
conjunctions of atomic molecules. Next, these atomic expressions are represented
by first-order predicates. The resulting set of rules augmented with additional
closure rules to capture the specific semantics of OO-logic. Some rules are needed



to express statements such as the transitivity of the subclass relationship. Oth-
ers implement inheritance, and so on. Table 1 shows the second stage in the
above process. Whenever an OO-logic specification is split into modules, the
predicates type, subclass, member, value, etc., in table are disambiguated for
different modules by adding an additional attribute.

The following are examples of some of the closure rules added in stage 3 of
the above process:

// closure rules for ?X :: ?Y

a1: subclass(?X, ?Z) :- subclass(?X, ?Y), subclass(?Y, ?Z).

// closure rules for ?X : ?C

a2: member(?O, ?C) :- subclass(?C1, ?C), member(?O, ?C1).

// structural inheritance of signatures

a3: value(?C1, properties, ?A) :-

subclass(?C1, ?C2), value(?C2, properties,?A).

The resulting set of rules and facts is a set of Horn clauses with negation.
This set of logic clauses is then processed using stratified semantics (minimal
model semantics) for rule-based languages [14].

Experience with OntoBroker has shown that implementing a rule based sys-
tem on top of a database or a triple store heavily restricts the performance of
the system. Therefore the reasoning engine sem.reasoner has its own proprietary
persistency layer. This persistency layer is based on B+ trees [4]. This allows to
efficiently integrate large data sets into rule based reasoning. Several billions of
triples have already been loaded into this persistency layer.

3 Comparison to other rule languages

In the following we compare OO-logic with F-logic, SWRL, and SPIN - languages
used in the semantic web field.

Comparison to F-logic OO-logic is a successor to F-logic. Nearly a decade of
using F-logic has shown that especially signatures in F-logic have a too complex
syntax. Therefore we chose meta-modelling for defining properties and proper-
ties of those properties. This seems to be much easier to understand for subject
matter experts. In additon we allow variables at all positions of OO-atoms and
OO-molecules. So even at the property and module positions variables are al-
lowed. Our special syntax for expressing comparisons, mathematical expressions
was very well adopted from SMEs. Finally to have a full set of built-ins from
Java Math and String library was very important for the applications. In the
same way as it was with OntoBroker built-ins are easily extendible.

Comparison to SWRL SWRL (Semantic Web Rule Language) [7] is a mem-
ber submission to W3C. SWRLs syntax is based on predicates. Thus it does
not syntactically distinguish different concepts of ontologies, like membership to



classes, sub-class relationships and properties like it is done in OO-logic. Thus the
SWRL syntax is not very well memorable by humans. A rule language is Turing-
complete as soon as it provides function symbols. SWRL is based on OWL and
thus does not provide function symbols. This heavily restricts expressiveness of
SWRL. In contrast to OO-logic SWRL allows to express equality between differ-
ent terms. SWRL allows to express existentially quantified variables. This can
be done in OO-logic by using negation only.

Comparison to SPIN SPIN [6] is also a member submission to W3C. It is also
called SPARQL rules. SPINs syntax is closely related to SPARQL syntax which
in turn is related to SQL syntax. The syntax is dominated by a SQL like structure
and there is no syntactical differentiation between ontology concepts like instance
memberships, sub-classes, and properties. SPARQL is a query language for RDF
and OWL and does not provide function symbols. So expressiveness of SPIN is
also very limited.

4 A first Industrial Use Case

In the following we describe an industrial application “Routing and Reconcilia-
tion of SWIFT transactions in a bank” where OO-logic is already applied in.

OO-logic is currently used in a core banking system of a large European bank
for reconciliation and routing of SWIFT messages. SWIFT (Society for World-
wide Interbank Telecommunication) is a telecommunication infrastructure for
handling international money transactions. SWIFT also defines messages for
those transactions. OO-logic rules are used for describing routing and reconcil-
iation of such messages. Routing means that incoming messages are routed to
different target systems. Reconciliation means that related messages are checked
against each other. For instance a company has two bank accounts A,B in dif-
ferent banks. All incomes go to A, all outcomes go from B. At the end of each
month a large amount of money has to be transferred from A to B in order
to cover all the salaries. Now it has to be checked whether the money trans-
ferred from A to B covers all the outgoing salary transactions. For this purpose
a small ontology describing the classes and properties of those SWIFT messages
has been created. The incoming SWIFT messages are translated to OO-logic
objects and are validated against the ontology. OO-logic rules are used to de-
scribe where a SWIFT message has to be routed to and rules do the check for
the different reconciliation scenarios according to the values of the properties of
the SWIFT messages. The standard routing and matching scenarios have been
directly described using OO-logic rules. For derived scenarios inductive learning
(rule learning) has been applied to automatically create appropriate rules. This
application processes up to 100000 transactions a day. A transaction corresponds
to one money transfer. This is the whole volume of transactions of the bank for
that domain. The application is required to have a maximum down time of 4
hours a year. An example for such a rule is the following:



Match3: match(?MT910,?MT103,Match3) :-

?MT103:MT103, ?MT910:MT910,

?MT103[sendersReference:?R, currency:?C],

?MT910[referenceToRelatedTransaction:?R, currency:?C, value:?V],

?S:= sum{?V [?MT910] | ?MT103:MT103, ?MT910:MT910,

?MT103[sendersReference:?R, currency:?C, value:?V],

?MT910[referenceToRelatedTransaction:?R, currency:?C]},

?S = ?V.

It states that a message of type MT910 matches with several messages of type
MT103 if the sum of the values in MT103 equals to the value in MT910.

5 Conclusion and future work

We have presented OO-logic which is a successor of F-logic. Both languages dif-
ferentiate conceptual concepts by its syntaxes. OO-logic heavily simplifies the
syntax of F-logic, adds additional useful features and adds special syntax for con-
venience reasons. Among others OO-logic includes all Math and String function-
alities of Java as built-ins. OO-logic is implemented by the reasoner sem.reasoner.
Its architecture allows to efficiently do reasoning in large data sets. OO-logic
is a logical consequence of a decade using F-logic in real world applications.
With OO-logic we think we have a mature ontology and rule language. adesso
(https://adesso.de) has OO-logic adopted in several of its projects. In future
we will focus on the further development of the reasoning engine sem.reasoner.
So topics like clustering, data safety, distributed reasoning are on the agenda.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases: the logical level.
Addison-Wesley Longman Publishing Co., Inc. (1995)

2. Angele, J.: Ontobroker. Semantic Web 5(3), 221–235 (2014)
3. Angele, J., Kifer, M., Lausen, G.: Ontologies in f-logic. In: Handbook on Ontologies,

pp. 45–70. Springer (2009)
4. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indexes.

In: Software pioneers, pp. 245–262. Springer (2002)
5. Beeri, C., Ramakrishnan, R.: On the power of magic. The journal of logic pro-

gramming 10(3-4), 255–299 (1991)
6. Fürber, C., Hepp, M.: Using sparql and spin for data quality management on the

semantic web. In: International Conference on Business Information Systems. pp.
35–46. Springer (2010)

7. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.,
et al.: Swrl: A semantic web rule language combining owl and ruleml. W3C Member
submission 21(79), 1–31 (2004)

8. Kifer, M.: Nonmonotonic reasoning in flora-2. In: International Conference on Logic
Programming and Nonmonotonic Reasoning. pp. 1–12. Springer (2005)

9. Kifer, M., Boley, H.: Rif overview. W3C working draft, W3C,(October 2009).
http://www. w3. org/TR/rif-overview (2013)

https://adesso.de


10. Kifer, M., De Bruijn, J., Boley, H., Fensel, D.: A realistic architecture for the
semantic web. In: International Workshop on Rules and Rule Markup Languages
for the Semantic Web. pp. 17–29. Springer (2005)

11. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. Journal of the ACM (JACM) 42(4), 741–843 (1995)

12. Liu, M.: Deductive database languages: problems and solutions. ACM Computing
Surveys (CSUR) 31(1), 27–62 (1999)

13. Sintek, M., Decker, S.: Triplea query, inference, and transformation language for the
semantic web. In: International Semantic Web Conference. pp. 364–378. Springer
(2002)

14. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM (JACM) 38(3), 619–649 (1991)

15. Yang, G., Kifer, M., Zhao, C.: Flora-2: A rule-based knowledge representation and
inference infrastructure for the semantic web. In: OTM Confederated International
Conferences” On the Move to Meaningful Internet Systems”. pp. 671–688. Springer
(2003)


	OO-logic: a Successor of F-logic

