=Paper=
{{Paper
|id=Vol-2444/alatiknow_3_contents
|storemode=property
|title=None
|pdfUrl=https://ceur-ws.org/Vol-2444/ialatecml_3_contents.pdf
|volume=Vol-2444
}}
==None==
Table of Contents Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Foundations of Interactive Adaptive Learning Georg Krempl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 From Interactive Machine Learning to Explainable Artificial Intelligence Andreas Holzinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Invited Talk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Evaluation of Interactive Machine Learning Systems Nadia Boukhelifa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Full Research Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Toward Faithful Explanatory Active Learning with Self-explainable Neural Nets Stefano Teso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Validating One-Class Active Learning with User Studies – a Prototype and Open Challenges Holger Trittenbach, Adrian Englhardt and Klemens Böhm . . . . . . . . . . . 17 RAL – Improving Stream-Based Active Learning by Reinforcement Learning Sarah Wassermann, Thibaut Cuvelier and Pedro Casas . . . . . . . . . . . . . 32 Knowledge-based Selection of Gaussian Process Surrogates Zbyněk Pitra, Lukáš Bajer and Martin Holeňa . . . . . . . . . . . . . . . . . . . . . 48 Explicit Control of Feature Relevance and Selection Stability Through Pareto Optimality Victor Hamer and Pierre Dupont . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Deep Bayesian Semi-Supervised Active Learning for Sequence Labelling Tomáš Šabata, Juraj Eduard Páll and Martin Holeňa . . . . . . . . . . . . . . . 80 Short Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Combating Stagnation in Reinforcement Learning Through ‘Guided Learning’ with ‘Taught-Respone Memory’ Keith Tunstead and Joeran Beel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Towards Active Simulation Data Mining Mirko Bunse, Amal Saadallah and Katharina Morik . . . . . . . . . . . . . . . . 104 Active Feature Acquistion for Opinion Stream Classification under Drift Ranjith Shivakumaraswamy, Christian Beyer, Vishnu Unnikrishnan, Eirini Ntoutsi and Myra Spiliopoulou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108