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Abstract. We are concerned with k-medoids clustering and propose a
quadratic unconstrained binary optimization (QUBO) formulation of the
problem of identifying k medoids among n data points without having to
cluster the data. Given our QUBO formulation of this NP-hard problem,
it should be possible to solve it on adiabatic quantum computers.

1 Introduction

Quadratic unconstrained binary optimization problems (QUBOs) are concerned
with finding an n-dimensional binary vector that minimizes a quadratic objective

z∗ = argmin
z∈{0,1}n

zᵀQz + zᵀq. (1)

They thus pose combinatorial optimization problems which generally prove to
be NP-hard. Indeed, difficult problems such as capital budgeting or task alloca-
tion in operations research, constraint satisfaction in AI, or maximum diversity,
maximum clique, or graph partitioning in data mining and machine learning are
but a few examples of where QUBOs occur in practice [1].

Owing to their practical importance, there exists a venerable literature on
QUBOs and efficient solution strategies (for an extensive survey, see [2] and the
references therein). More recently, however, interest in QUBOs has also arisen
in a different context. Since adiabatic quantum computers such as produced by
D-Wave [3,4] are designed to solve them, research on QUBO reformulations of
various problems has noticeably intensified. Indeed, Boolean satisfiability [5],
graph cuts [6,7,8], graph isomorphisms [9], binary clustering [6,10], or classifier
training [11,12] have lately been solved via adiabatic quantum computing.

Following this line of research, we propose a QUBO formulation of the prob-
lem of identifying k medoids among n data points which, to our knowledge,
has neither been attempted nor reported before. While we do not consider a
quantum computing implementation itself, our result indicates that prototype
extraction can be accomplished on quantum computers.

Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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Fig. 1: Three didactic data samples together with their means and medoids.

Next, we briefly summarize the notion of a medoid and the ideas behind
k-medoids clustering. We then present our QUBO formulation of the k-medoids
problem and discuss simple examples that illustrate the practical performance of
our approach. Finally, we review related work and summarize our contributions.

2 k-Medoids Clustering

Consider a sample X = {x1, . . . ,xn} of n Euclidean data points xi ∈ Rm. The
well established sample mean

µ = argmin
x∈Rm

∑
xi∈X

∥∥xi − x
∥∥2 =

1

n

∑
xi∈X

xi (2)

is a frequently used summary statistic for such data. The so called sample medoid

m = argmin
xj∈X

∑
xi∈X

∥∥xi − xj

∥∥2 (3)

on the other hand, is arguably less widely known but has interesting applications
as well.

Figure 1 illustrates characteristics of means and medoids. Both minimize
sums of distances to available sample points. However, while the mean is not
necessarily contained in the sample, the medoid always coincides with an element
of the sample and, for squared Euclidean distances as in (3), it is easy to prove
that this element is the sample point closest to the mean [13].

An interesting feature of medoids is that they result from evaluating squared
distances between given data only.1 As these can be precomputed and stored in
an n× n distance matrix D where Dij = d2(xi,xj), medoids can be computed

1 Note once again that x in equation (2) may not be contained in X whereas xi and
xj in equation (3) always are.



Algorithm 1 k-medoids clustering via Lloyd’s algorithm

Require: index set I = {1, . . . , n}, distance matrix D ∈ Rn×n, and parameter k ∈ N
initialize set of k cluster medoid indices

M = {j1, j2, . . . , jk} ⊂ I

repeat
for l = 1, . . . , k do

determine cluster

Cl =
{
i ∈ I

∣∣ Dijl ≤ Dijq

}
(4)

for l = 1, . . . , k do
update medoid index

jl = argmin
j∈Cl

∑
i∈Cl

Dij (5)

until clusters stabilize

from relational data. Contrary to means, medoids may thus also be estimated
on sets of strings or graphs or other non-numeric data as long as there is an
appropriate distance measure d(·, ·) [13].

Moreover, since medoids coincide with actual data points, analysts often
find them easy to interpret. This is why k-medoids clustering is an increasingly
popular tool whenever explainable or physically plausible prototypes need to be
determined [14,15,16,17,18].

Conceptually, k-medoids clustering is almost identical to k-means clustering.
To accomplish it, we may, for instance, simply adapt Lloyd’s algorithm [19]. In
other words, given randomly initialized medoids, we may determine clusters by
assigning data points to their closest medoid, update the medoid of each cluster,
and repeat these steps until clusters stabilize.

Note, however, that (local) medoids, too, are relational objects that can solely
be determined from analyzing a distance matrix. Given such a distance matrix
for a data set X , k-medoids clustering can thus be performed on index sets only.
We demonstrate this in Algorithm 1 where I = {1, 2, . . . , n} indexes the data
in X . Having initialized a set M = {j1, j2, . . . , jk} ⊂ I of medoid indices, each
cluster Cl is an index set containing the indices of those data points xi that are
closest to medoid mjl (equation (4)). Given the clusters, each medoid index jl is
then set to the index of the medoid of the points indexed by Cl (equation (5)).

Similar to k-means clustering, k-medoids clustering subdivides the input
space into convex cells each of which is defined w.r.t. a prototype. Just as in
k-means clustering via MacQueen’s algorithm [20], k-medoids clustering could
therefore in principle be performed in two steps where medoids are determined
first and data are assigned to them second. However, contrary to k-means cluster-
ing, the combinatorial nature of k-medoids clustering, which selects prototypes



from a discrete set of data points, prevents the use of continuous MacQueen-type
updates of prototypes.

Indeed, we are not aware of prior work on how to find local medoids without
having to compute clusters. The quadratic unconstrained binary optimization
formulation of the problem which we present in the next section, however, can
accomplish this.

3 A QUBO Formulation for k-Medoids Estimation

Our idea for how to select k local medoids among n data points is based on an
observation regarding classical k-means clustering.

Recall that, if a set X of n data points is partitioned into k clusters Cl of nl
elements whose mean is µl, adding the within cluster scatter

SW =

k∑
l=1

∑
x∈Cl

∥∥x− µl

∥∥2 (6)

and the between cluster scatter

SB =
1

2n

k∑
i=1

k∑
j=1

ni nj
∥∥µi − µj

∥∥2 (7)

yields a constant; that is, we have SW + SB = c.
This follows from Fisher’s analysis of variance [21,22] and is to say that the

two scatter values are inverse under addition: either SW is large and SB is small,
or SW is small and SB is large. Since a small within cluster scatter is usually
taken to be the objective of k-means clustering, we therefore observe that “good”
cluster means are close to the data points within their cluster and, at the same
time, far apart from each other.

Consequently, we posit that the same should hold true for the medoids that
are supposed to result from k-medoids clustering.

Note, however, that (6) involves variances about local centroids. Since medoids
are not necessarily central, we henceforth work with a more robust measure of
similarity. In particular, we consider Welsch’s M -estimator

∆ij = 1− exp
(
− 1

2 Dij

)
(8)

which is known from robust regression [23] and also referred to as the correntropy
loss [24,25].

3.1 A QUBO to identify far apart data points

The problem of selecting k mutually far apart objects among a total of n objects
is known as the max-sum dispersion problem [26] and can be formalized as



follows: given an n×n similarity matrix ∆ over n objects which are indexed by
I = {1, 2, . . . , n}, determine a subset M∗ ⊂ I, |M∗| = k such that

M∗ = argmax
M⊂I

1

2

∑
i∈M

∑
j∈M

∆ij

s.t. |M| = k.

(9)

Looking at this problem, we note that, upon introducing binary indicator
vectors z ∈ {0, 1}n whose entries are given by

zi =

{
1, if i ∈M
0, otherwise,

(10)

it can also be written in terms of a constrained binary optimization problem

z∗ = argmax
z∈{0,1}n

1
2z

ᵀ∆z

s.t. zᵀ1 = k
(11)

where 1 ∈ Rn denotes the vector of all ones.
If we further note that zᵀ1 = k ⇔ (zᵀ1 − k)2 = 0, we find that (11)

can equivalently be expressed as a quadratic unconstrained binary optimization
problem, namely

z∗ = argmax
z∈{0,1}n

1
2z

ᵀ∆z − γ (zᵀ1− k)2 (12)

where γ ∈ R is a Lagrange multiplier. Treating this multiplier as a constant and
expanding the expression on the right hand side, we obtain

z∗ = argmax
z∈{0,1}n

1
2z

ᵀ∆z − γ zᵀ11ᵀz + 2 γ k zᵀ1− γ k2 (13)

= argmax
z∈{0,1}n

zᵀ
(
1
2∆− γ 11

ᵀ
)
z + 2 γ k zᵀ1− const (14)

= argmin
z∈{0,1}n

zᵀ
(
γ 11ᵀ − 1

2∆
)
z − 2 γ k zᵀ1. (15)

3.2 A QUBO to identify central data points

Using the above notation, the problem of selecting k most central objects among
a total of n objects can be formalized as follows

M∗ = argmin
M⊂I

∑
i∈M

∑
j∈I

∆ij

s.t. |M| = k.

(16)

Introducing binary indicator vectors and a Lagrange multiplier, reasoning as
above then leads to the following quadratic unconstrained binary optimization



problem

z∗ = argmin
z∈{0,1}n

zᵀ∆1 + γ (zᵀ1− k)2 (17)

= argmin
z∈{0,1}n

zᵀ
(
γ 11ᵀ

)
z + zᵀ

(
∆1− 2 γ k 1

)
. (18)

3.3 Putting both QUBOs together

In order to combine the QUBO that identifies far apart points (15) and the
QUBO that identifies central points (18) into a single model that identifies rather
central points that are rather far apart, we adhere to common practice [27].
That is, we introduce two additional tradeoff parameters α, β ∈ R to weigh the
contributions of either model. This way, we obtain

z∗ = argmin
z∈{0,1}n

zᵀ
(
γ 11ᵀ − α 1

2∆
)
z + zᵀ

(
β∆1− 2 γ k 1

)
. (19)

3.4 Choosing α, β, and γ

Working with Welsch’s function in (8) has the additional benefit that it maps
squared distances such as ‖xi − xj‖2 into the interval [0, 1].

For the weighted, model specific contributions that occur in (19), we therefore
have the following two upper bounds

α 1
2 z

ᵀ∆z ≤ α 1
2 k

2 · 1 (20)

β zᵀ∆1 ≤ β n k · 1. (21)

This suggests to set the weighting parameters to α = 1/k and β = 1/n so as
to normalize the two contribution to about the same range. For the Lagrange
multiplier which enforces solutions z∗ to have k entries equal to 1, we choose
γ = 2 so as to prioritize this constraint.

4 Practical Examples

Next, we present two admittedly simple experiments that illustrate the behavior
of the QUBOs in (15), (18), and (19). Note again that our primary goal in this
paper is to investigate whether it is possible to identifying k medoids among n
data points without having to cluster the data; efficiency and scalability are not
our main concerns. Correspondingly, we consider two samples of 2D data points
that are small enough to allow for brute force estimation of the minimizers of
the above QUBOs. In other words, in both experiments, we compute similarity
matrices ∆ over n ∈ {12, 16} data points, chose α, β, and γ as above and then
evaluate each of the 2n possible solutions to the QUBOs in (15), (18), and (19)
in order to determine the respective best one.

The data in our first experiment were deliberately chosen such that extremal,
central, as well as locally medoidal data points can be easily identified by visual



(a) 2D data (b) solution to (15) (c) solution to (18) (d) solution to (19)

Fig. 2: Given a didactic sample of 2D data points forming 4 clusters, we solve
the QUBOs in (15), (18), and (19) for k = 4. While the solution to (15) identifies
the 4 most extremal data points, the solution to (18) identifies the 4 most central
ones. Solving (19) trades off both these results and identifies 4 local medoids.

(a) 2D data (b) solution to (15) (c) solution to (18) (d) solution to (19)

Fig. 3: Given 16 data points sampled from 3 bivariate Gaussian distributions,
we solve the QUBOs in (15), (18), and (19) for k = 3. Again, the solution to (15)
identifies the 3 rather extremal data points and the solution to (18) corresponds
to 3 rather central ones. The solution to (19) identifies 3 local medoids.

inspection. They can be seen in Fig. 2a which shows n = 12 two-dimensional data
points which form 4 apparent clusters. Setting k = 4 and solving the QUBOs
in (15), (18), and (19) produces indicator vectors that identify the data points
highlighted in Fig. 2b–2d. Looking at these results suggests that they are well
in line with what human analysts would deem reasonable.

In our second experiment, we generated 100 sets of n = 16 data points
sampled from 3 bivariate Gaussian distributions; Fig. 3a shows an example.
Setting k = 3, we then solved the QUBOs in (15), (18), and (19). Exemplary
results can be seen in Fig. 3b–3d. The three extremal data points in Fig. 3b make
intuitive sense. The fact that the three rather central data points in Fig. 3c are
all situated in the cluster to the bottom left is due to the fact that this is the
largest of the three clusters; here, our use of Welsch’s M -estimator has the effect
that points which are central w.r.t. several nearby points are being favored. The
local medoids highlighted in Fig. 3d are again intuitive.

For each of the 100 data sets considered in this experiment, we also compared
the k = 3 medoids obtained from solving (19) to those produced by Algorithm 1.



In each of our 100 tests, we found them to be identical. While such a perfect
agreement between both methods is likely an artifact of the small sample sizes
we worked with, it nevertheless corroborates the utility of our QUBO based
approach to the k-medoids problem.

5 Related Work

As of this writing, there are three major algorithmic approaches to k-means
clustering, namely those due to Lloyd [19], MacQueen [20], and Hartigan and
Wong [28]. Lloyd- and Hartigan-type approaches alternatingly update means
and clusters and have been applied to the combinatorial problem of k-medoids
clustering, too. Examples for the former can be found in [13] and [29]; examples
of the latter include the algorithms PAM and CLARA as well as variations
thereof [30,31,32].

However, to the best of our knowledge, MacQueen type procedures, which
determine local means without having to compute clusters, have not yet been
reported for the k-medoids setting. The QUBO presented in equation (19) fills
this gap. While it is not an iterative method such as MacQueen’s procedure, it
nevertheless suggests that medoids, too, can be estimated without clustering.

Our derivation of a QUBO for the k-medoids problem was motivated by the
quest for quantum computing solutions for relational or combinatorial clustering.
Here, most prior work we are aware of has focused on solutions for k = 2 [6,7,8].
Work on solutions for k > 2 can be found in [33].

However, the methods proposed there are similar in spirit to kernel k-means
clustering in that they operate on binary cluster membership indicator matrices
Z ∈ {0, 1}k×n. This is to say that they perform quantum clustering in a manner
that produces clusters but does not identify cluster prototypes. Our approach
in this paper, however, only requires binary indicator vectors z ∈ {0, 1}n and is,
once again, able to identify 1 ≤ k ≤ n prototypes without having to compute
clusters.

6 Summary

In this paper, we have proposed a quadratic unconstrained binary optimization
(QUBO) formulation of the problem of identifying k local medoids within a
sample of n data points. The basic idea is to trade off measures of central and
extremal tendencies of individual data points. Just as conventional approaches
to k-medoids clustering, our solution works with relational data and therefore
applies to a wide range of practical settings. However, to the best of our knowl-
edge, our solution is the first that is capable of extracting k local medoids without
having to compute clusters.

This capability comes at a price. While conventional k-medoids clustering as
well as our QUBO formulation constitute NP-hard combinatorial problems, the
former can be solved (approximately) by means of greedy heuristics. Yet, for the
latter, such heuristics are hard to conceive.



However, an aspect of our model that may soon turn into a viable advantage
is that it can be easily solved on quantum computers. While this paper did not
consider corresponding quantum computing implementations, they are the topic
of ongoing work and results will be reported once available.
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