
Constraint Solver Requirements
for Interactive Configuration

Andreas Falkner and Alois Haselböck and Gerfried Krames and Gottfried Schenner and Richard Taupe1

Abstract. Interactive configuration includes the user as an essen-
tial factor in the configuration process. The main two components of
an interactive configurator are a user interface on the front-end and
a knowledge representation and reasoning (KRR) framework on the
back-end. In this paper we discuss important requirements for the
underlying KRR system to support an interactive configuration pro-
cess while focusing on classical constraint satisfaction as one of the
most prominent KRR technologies for configuration problems. We
evaluate several freely available constraint systems with respect to
the identified requirements for interactive configuration and observe
that many of those requirements are not well supported.

1 INTRODUCTION

Constraint satisfaction [18] is often used as an underlying reason-
ing system for product configuration problems [12]. Product config-
uration is usually an interactive task: Iteratively, the user makes a
decision and the configurator computes the consequences of this de-
cision. In his PhD thesis [6], David Ferrucci summarized the inherent
interactivity of configurators as follows:

“Interactive configuration is a view of the configuration task
which includes the user as an essential component of a dy-
namic process. The interactive configurator is designed to as-
sist the user in an interactive and incremental exploration of the
configuration space. It may guide or advise the user’s decision
making but it must communicate requirements or inconsisten-
cies effected by the constraints in response to the user’s choices.
This feedback helps the user to refine the configuration space
toward a satisfying solution.
The key component of an interactive configurator is the con-
straint manager which is responsible for incrementally main-
taining the relationship between choices and constraint viola-
tions. [. . .] The requirement to deliver meaningful and timely
feedback imposes significant demands on the flexibility, effi-
ciency and explainability of constraint management.”

Pieter van Hertum et al. studied in [9] how the knowledge base
paradigm – the separation of concerns between information and
problem solving – could hold in the context of interactive config-
uration. They identified a set of subtasks that overlaps well with
the set of requirements we propose in this paper in Section 4: Ac-
quiring information from the user, generating consistent values for a

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
andreas.a.falkner@siemens.com, alois.haselboeck@siemens.com,
gerfried.krames@siemens.com, gottfried.schenner@siemens.com,
richard.taupe@siemens.com
Author names are ordered alphabetically.

parameter, propagation of information, checking the consistency for
a value, checking a configuration, autocompletion, explanation, and
backtracking.

Matthieu Queva et al. describe in [17] requirements on interac-
tive configurators mainly from the modelling perspective and call
for high-level, expressive languages like UML or SysML. They also
mention constraint modelling as an important aspect of configura-
tion. From the viewpoint of constraint reasoning, Jeppe Madsen iden-
tified three fundamental interactivity operations in his master the-
sis [14]: add constraint, remove constraint, and restoration.

In this paper, we concretize those ideas and focus on applications
where a tailor-made user interface (UI) or legacy system is enhanced
with solving capabilities, i.e., by calling a general constraint solver as
a component. An alternative would be to implement a special UI for
an integrated configuration system such as a commercial CPQ tool
or sales configurator suite, but that bears the risk of vendor-lock-in.

Figure 1 gives an overview of the addressed scenario: Users in-
teract with the configurator to achieve their goals, thus putting chal-
lenges to user interface functionality. Those challenges pose reason-
ing interaction requirements on the API of the used constraint solver.
The solver is an off-the-shelf product (open-source or commercial)
and has a general API, partly dedicated to configuration problems.
Together with a domain-specific product model (or knowledge base,
KB), it forms the KRR component. This back-end is called by the
control component which first hands over product model and user-
set values for decision variables from the UI to the API and then
sends the solver results back to the UI.

user interaction

Constraint Solver

Configuration APIControl

Product Model

Configurator

User
Interface

reasoner
interaction

Figure 1. Components of an interactive configurator

The configurator shall help a user to configure a product accord-
ing to his/her needs and in full compliance to the product model. The
user expects the configurator to show all necessary decisions (vari-
ations) in a clear and well-arranged way, to highlight or preset the
“best” alternative (value), to filter or grey-out infeasible values, to

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

recommend alternatives in case of conflicts, and to respond quickly
(preferably instantaneously) to user inputs.

The remainder of this paper is organized as follows: In Section 2,
an example for interactive configuration is introduced. In Section 3,
we give a problem definition of interactive configuration. We define
the requirements for an interactive configuration API in Section 4
and investigate in Section 5 how some typical constraint solvers sat-
isfy these requirements. We conclude the paper in Section 6 with a
summary and future work.

2 EXAMPLE

We show the challenges of interactive configuration in a small ex-
ample for a configurable product with components that can occur
multiple times (similar to generative constraint satisfaction [7] or
cardinality-based feature modelling [3]).

A Metro train wagon has as configurable attributes the size (length
in millimetres: 10000..20000) and the expected load (number of pas-
sengers: 50..200) which can be realized as seats or standing room. As
components we consider only seats (max. 4 per meter of length) and
handrails, and their number is configurable.

There is at most one handrail in a wagon (mandatory if there is
standing room) and it has a configurable type: “standard” or “pre-
mium”.

A single seat consumes standing room for 3 persons and has as
configurable attributes the type (“standard”, “premium”, “special”)
and the color (“blue”, “red”, “white”). The type is constrained such
that standard is not allowed to be mixed with premium (for seats and
handrails). The color of all seats must be the same, except for special
seats which have to be “red”.

Users expect the following (static) default values: type = standard,
color = blue. Furthermore, they prefer to use all available space (as
defined by the length) for passengers (i.e., maximize the load factor).

Wagon
length_mm: 10000...20000
nr_passengers: 50..200
nr_seats: 0..200
standing_room: 0..200

nr_seats + standing_room = nr_passengers
nr_seats + standing_room/3 ≤
4*length_mm/1000
nr_seats = count(Seat)
standing_room>0 → count(Handrail)=1
all-equal-type()
all-equal-color()
maximize nr_passengers/length_mm

Handrail
type: {standard, premium}

Seat
type: {standard, premium, special}
color: {blue, red, white}

type=special → color=red

0..1 0..80

Figure 2. Class diagram of the Wagon example. Default values are
underlined. Wagon.all-equal-type() stands for a constraint that all sub-parts
must have the same type except for special. Wagon.all-equal-color() stands
for a constraint that all associated seats (except if type=special) must have
the same color.

Figure 2 shows a UML class diagram for this sample specification,
including pseudo code for all constraints. A modelling in a standard
constraint solver is more verbose because it requires the mapping of

the UML classes to arrays of variables and some other implemen-
tation decisions, e.g., special handling of the “dynamic” parts, i.e.,
number of seats dependent on the expected load and length – see the
MiniZinc program in Listing 1.

Listing 1. MiniZinc program for the Wagon example

% C o n s t a n t s , Domains
i n t : m i n _ l e n g t h = 10000 ;
i n t : max_leng th = 20000 ;
i n t : max_sea t s = max_leng th *4 d i v 1000 ;
i n t : min_load = 50 ;
i n t : max_load = 200 ;

enum Colo r = { blue , red , whi te , noColor } ;
enum Type = { s t a n d a r d , premium , s p e c i a l , noType } ;

% Wagon
var m i n _ l e n g t h . . max_leng th : length_mm ;
var min_load . . max_load : n r _ p a s s e n g e r s ;
var 0 . . max_sea t s : n r _ s e a t s ;
var 0 . . max_load : s t a n d i n g _ r o o m ;
var 0 . . 1 : n r _ h a n d r a i l s ;

% S e a t s
array [1 . . max_sea t s] o f var Colo r : s e a t _ c o l o r ;
array [1 . . max_sea t s] o f var Type : s e a t _ t y p e ;

% H a n d r a i l
var Type : h a n d r a i l _ t y p e ;

% C o n s t r a i n numbers
c o n s t r a i n t n r _ s e a t s + s t a n d i n g _ r o o m = n r _ p a s s e n g e r s ;
c o n s t r a i n t n r _ s e a t s + s t a n d i n g _ r o o m / 3 <=

↪→ length_mm *4/1000 ;

% Mandatory h a n d r a i l f o r s t a n d i n g room w i t h p ro per t y p e
c o n s t r a i n t s t a n d i n g _ r o o m > 0 −> n r _ h a n d r a i l s = 1 ;
c o n s t r a i n t h a n d r a i l _ t y p e ! = s p e c i a l ;
c o n s t r a i n t n r _ h a n d r a i l s = 0 <−> h a n d r a i l _ t y p e = noType ;
c o n s t r a i n t n r _ h a n d r a i l s > 0 −> f o r a l l (i in 1 . . n r _ s e a t s

↪→ where s e a t _ t y p e [i] ! = s p e c i a l) (h a n d r a i l _ t y p e =
↪→ s e a t _ t y p e [i]) ;

% Same c o l o r and t y p e f o r a l l s e a t s b u t s p e c i a l
c o n s t r a i n t f o r a l l (i in n r _ s e a t s +1 . . max_sea t s)

↪→ (s e a t _ c o l o r [i] = noColor) ;
c o n s t r a i n t f o r a l l (i in n r _ s e a t s +1 . . max_sea t s)

↪→ (s e a t _ t y p e [i] = noType) ;
c o n s t r a i n t f o r a l l (i , j in 1 . . n r _ s e a t s where i < j)

↪→ (s e a t _ t y p e [i] ! = s p e c i a l / \ s e a t _ t y p e [j] ! =
↪→ s p e c i a l −> s e a t _ t y p e [i] = s e a t _ t y p e [j]) ;

c o n s t r a i n t f o r a l l (i , j in 1 . . n r _ s e a t s where i < j)
↪→ (s e a t _ t y p e [i] ! = s p e c i a l / \ s e a t _ t y p e [j] ! =
↪→ s p e c i a l −> s e a t _ c o l o r [i] = s e a t _ c o l o r [j]) ;

c o n s t r a i n t f o r a l l (i in 1 . . n r _ s e a t s) (s e a t _ t y p e [i] =
↪→ s p e c i a l −> s e a t _ c o l o r [i] = r e d) ;

% Use f u l l l e n g t h f o r p a s s e n g e r s (a v o i d dead space)
s o l v e maximize n r _ p a s s e n g e r s / length_mm ; % load f a c t o r

3 PROBLEM DEFINITION

The main two parties in interactive configuration are the user and
the configurator. The user’s goal is to configure a product such that
it is a valid and complete product variant that meets all his/her in-
dividual requirements. The configurator is a digital companion that
supports the configuration process by deriving consequences of the
user’s choices and by assisting to avoid and resolve conflicts.

The simplest type of a user interaction is to set the value of a
configuration parameter. This can be seen as answering a question
that the configuration tool asked. Example: For how many passen-
gers should the wagon provide seats? Of course, the user should also
be able to withdraw his/her decision, which corresponds to unsetting
a configuration parameter. The value of the parameter will then be
either undefined or the default value or set by solving.

In most non-trivial configuration problems, a dynamic number of
configuration objects plays an important role. Some authors of this
paper have developed configurators for large industrial products for
more than 25 years and always faced problems that could not be rep-
resented as simple, static lists of configuration parameters (see [4]).
Therefore, another important type of user interaction is the creation

and deletion of configuration objects. In the example problem in Sec-
tion 2, seats are configuration objects whose number is not known
beforehand, and where each seat can be configured individually (seat
color and type). Typically, there are two different ways how the user
manipulates the number of individual configuration objects in the
user interface: either by creating them one by one, or by specifying
the number of objects and letting the configuration tool create the
individual objects. But in both cases, the result is a set of configu-
ration objects whose number was not known beforehand and whose
properties can be configured further. This is not the case for the rep-
resentation of standing_room in our example. The user can set only
the capacity as a number but no further individual properties. Thus,
standing room need not to be modelled as configuration objects in
our example.

Definition (User Interaction). The main types of user interactions
in interactive configuration are: (i) create configuration object, (ii)
delete configuration object, (iii) set/unset configuration object at-
tribute, (iv) set/unset association between configuration objects.

We are aware that various approaches to interactive configuration
may define the list of main types of user interactions differently. For
example, structure-based configuration considers the following types
of user interaction: parametrization, decomposition, integration, and
specialization [10]. Due to the limited scope of this paper, we focus
on types of user interaction that are most relevant in our experience.

User interactions change the state of the configuration by mak-
ing decisions. Solver interactions make implicit knowledge explicit
to assist the user. For instance, the consequence of a user set-
ting the attribute type of a seat to special is that the solver
will automatically set its attribute color to red because of the
according constraint – see, e.g., user action 5 in Figure 3. An-
other typical solver interaction is domain filtering. If, e.g., the
nr_passengers was set to 160 as by user action 1 in Fig-
ure 3, then the lower bound of length_mm would change to 13334
because of the constraint nr_seats + standing_room/3 ≤
4*length_mm/1000 (for the case that nr_seats is 0) and anal-
ogously, for the case that length_mm is 20000, the upper bound
of nr_seats would be 40 (not more because the lower bound
of standing_room must be 120 to achieve the 160 passengers).
This knowledge was already implicitly contained in the configura-
tion model of the problem, as described above, but the solver made
its consequences explicit, thus creating a distinct benefit to the user.

Definition (Solver Interaction). A solver interaction is a set of con-
sequences following a user interaction. Typical solver interactions
are:

• Set or change the value of a variable not yet set by the user
• Remove or add a value to a variable domain
• Create or delete a configuration object because of resource de-

mands by the user (such as the number of seats)
• Explain a conflict in variable values
• Propose alternative solutions to a conflict
• Automatically complete a partial configuration (autocompletion)

Many of the solver interactions mentioned above must distinguish
whether a configuration parameter has no value or a default value, or
whether it has been set by the user or by the solver, because user-set
values are typically not allowed to be overwritten by the solver.

With the current rise of data analytics and machine learning tech-
niques and tools, additional types of solver interactions will become
state-of-the-art in the future, like recommendation of input values

User action 1:
Set nr_passengers = 160

Solver changes:
domain(length_mm) = [13334,20000]
domain(nr_seats) = [0,40]
domain(standing_room) = [120,160]
create handrail with
type = standard

User action 2:
Set nr_seats = 30

Solver changes:
domain(length_mm) = [18334,20000]
standing_room = 130
create 30 seats with
type = standard
color = blue

User action 3:
Set standing_room = 140

Solver proposes alternative conflict resolutions:
1. nr_passengers = 170
2. nr_seats = 20

User action 4:
Unset nr_seats (accept proposal 2)

Solver changes:
domain(length_mm) = [16667,20000]
nr_seats = 20
delete 10 seats

User action 5:
Set first seat’s type = special

Solver changes:
first seat’s color = red

User action 6:
Autocomplete (with optimization)

Solver changes:
length_mm = 16667 (maximize load factor)

User action 7:
Set handrail’s type = premium

Solver changes:
for all seats except first, type = premium

Figure 3. Example of a configuration dialog for the configuration problem
in Section 2

learned from previous configuration sessions or the support of group
decisions.

Definition (Interactive Configuration). An interactive configuration
is an alternating sequence of user and solver interactions.

An example of a typical configuration dialog between user and
configurator is shown in Figure 3.

Having set up the definition of interactive configuration, we can
sharpen our research question: To what extent do existing solver
frameworks support the different types of solver interactions in in-
teractive configuration? This question is relevant both for compa-
nies which sell configurable products/solutions and for solver tool
providers (which often originate from academia). Product vendors
want to use solvers which cover as many requirements as possible
to avoid cumbersome workarounds or proprietary implementations.
Tool providers are interested in this question to better focus on those
features of their tools that customers really need. Presently, solvers
seem to concentrate mainly on optimizing the performance of search
for a solution. An indicator for this is the high number of perfor-

mance challenges and competitions, such as the MiniZinc Challenge2

or the international SAT competitions.3

Our contribution in this paper is the definition of the main require-
ments on an interactive configurator and a survey to which extent ex-
isting, non-commercial solvers fulfill those requirements. However,
we do not claim to be exhaustive, neither in requirements nor in eval-
uated tools.

4 REQUIREMENTS
In this section we summarize the most important requirements on
a configuration API for constraint solvers with the aim to facilitate
interactive product configuration.

4.1 Basic interactions
The most basic interaction between the front-end (UI) and the config-
uration API is to set or unset a configuration parameter. Usually, the
configuration domain is modelled in an object-oriented way, where
configuration parameters correspond to attributes of configuration
objects. Creation and deletion of configuration objects and relation-
ships between them are also fundamental user actions.

Requirement (SetAttributeOrAssociation). The user can set or
change an attribute of a configuration object (e.g., the length of a
Wagon) or an association link between two configuration objects.
The constraint solver model must be updated to be in sync with the
front-end model.

Requirement (CreateOrDeleteConfigurationObject). The user can
create or delete configuration objects (e.g., create an instance of
Handrail). The constraint solver model must be updated to be in sync
with the front-end model.

Our assumption to use a 3rd-party constraint solver as underlying
reasoning system makes a transformation from the domain model to
the solver model necessary. Most constraint solvers are optimized in
dealing with flat (i.e., not object-oriented) integer-valued variable do-
mains. This mapping from the object model to the constraint model
is often cumbersome. Especially the encoding of objects and links
between objects is not trivial (for instance see [20]).

Requirement (ModelTransformation). The configuration API
should support mapping between a high-level, object-oriented do-
main model to the constraint model.

Requirement (ExpressivenessOfConstraintLanguage). Constraints
are the central tool for expressing dependencies between configu-
ration objects. The language of the constraint solver must be rich
enough to allow the formulation of all necessary integrity/consisten-
cy/resource constraints of the configuration domain.

4.2 Preferred and default solutions
Default values are an essential means for enhanced usability, because
the user is not forced to type in each parameter. In practice, default
values are also a means of recommendation, guiding the user to the
most common configuration. We distinguish static and dynamic (or
computed) default values.

2 https://www.minizinc.org/challenge.html
3 https://www.satcompetition.org/

Requirement (StaticDefaults). Static default values are the most
common form with built-in support by database systems and pro-
gramming languages. See, e.g., solver changes after user actions 1
and 2 in Figure 3.

Requirement (DynamicDefaults). Dynamic default values can be
computed by almost arbitrary functions, which may use as input
other variables of the same configuration (similar to the constraint
of Seat in Figure 2) as well as variable values from historic configu-
rations (e.g., most popular value).

Requirement (UnsetVariable). Support Undo and Unset (i.e., set to
UNDEF) of an earlier user decision, as, for example, in user action
4 in Figure 3. The user interface shall support overriding the default
value as well as reverting to the default value. A “revert to default”
capability is essential for good usability, guiding the users back to
the paved path from which they got lost.

Requirement (SoftConstraints). An essential property of default
values is that they can be overridden by solvers without loss of data.
If user-provided input values are regarded as constraints, then de-
fault values are soft constraints.

For example, given that the default color of a seat is blue, but spe-
cial seats are only available in red, then the solver overrides the de-
fault color selection with red for all special seats – see user action 5
in Figure 3. Usually this would not be perceived as data loss. On the
other hand, if color blue has been chosen by a deliberate user action,
and the seat type is changed to “special”, then the configuration is
inconsistent. In this case, the user must be notified and prompted for
a corrective action as discussed in Section 4.5 – the color must not
be changed without prior confirmation by the user.

4.3 Filtering
In an interactive configuration session, a user may be faced with
many possible choices. For example, the number of configuration
parameters for which the user can choose a value can be very high,
and the number of possible values that can be chosen for a given pa-
rameter can also be very high. A user might consecutively set several
parameters to values which at the end, possibly after several further
steps of interaction between solver and user, do not allow a valid so-
lution compatible to all those choices. The goal of filtering is to offer
to the user as few alternatives as possible which do not lead to a valid
solution.

Filtering can be used to grey-out values in the UI that are incon-
sistent with already user-set values (or communicate to the user in
another proper way that they are infeasible) so that the user cannot
choose them and end up in an invalid solution, e.g., the domains after
user actions 1 and 2 in Figure 3.

Hiding those inconsistent values completely from the user, e.g.,
not showing values < 13334 for length_mm after user action 2 in
Figure 3, is often not a good option as it reduces information and flex-
ibility (i.e., the possibility to change decisions) of the user too much
because the user would not know that he/she can set length_mm to
12000, for example (see Section 4.5 for more details).

Requirement (Filtering). The solver shall be able to filter invalid
values from domains (up to a certain degree of consistency) and to
return the current domain of a given variable on request.

The challenge is to efficiently find all inconsistent values and show
those for variables in the window that the user currently sees, even

https://www.minizinc.org/challenge.html
https://www.satcompetition.org/

for complicated constraints. Besides the computational performance
(the problem is NP-hard in general), it may also be difficult to present
them to the user in a clear and understandable way – e.g., for an
integer number variable show all even values greater than 100 except
2000.

Filtering, which is also found as propagation or constraint infer-
ence in the literature, is one of the techniques which constraint solv-
ing uses to tackle its underlying computational complexity. While
search explores a solution space opened up by variables for which
several possible value assignments exist, propagation deals with de-
terministic assignments that are forced by constraints. It may be in-
terleaved with search or done as a preprocessing step [2, 19].

Constraint propagation algorithms usually assume the domains of
the variables to be finite. They also assume constraints to be binary,
i.e., to involve exactly two variables. However, all n-ary constraints
can be transformed to binary ones [2, 19]. If a CSP (in which some
domains may already have been tightened down) can be extended to
a solution, it is called globally consistent. Since global consistency
is very expensive to maintain, various forms of local consistency –
mainly arc consistency – are used in practice [2, 19]. Another ap-
proach is to compile a CSP into a data structure that can maintain
global consistency, such as an automaton [1] or a binary decision
diagram (BDD) [15].

4.4 Solving
After having decided values for “important” variables, a user expects
the system to automatically complete the partial solution (i.e., the
user-set values) to a valid solution. As an alternative, the commercial
configurator Tacton CPQ4 offers a complete solution to the user all
the time. In general, the following user actions shall be supported by
the API of a constraint solver.

Requirement (ValidSolution). Computation of a valid solution for
the current state of the UI, i.e., user-set values are to be treated as
fixed. The implementation of this requirement can also be used for
checking whether there is a valid solution or not.

Requirement (OptimalSolution). Computation of an optimal solu-
tion, preferably with multiple optimization criteria.

User action 6 in Figure 3 is an example for a simple objective
function: maximizing the load factor minimizes the length_mm if
the nr_passengers is already set.

Requirement (NextSolution). Computation of the next solution:
In the case of Requirement (ValidSolution), this should be no-
ticeably distinct from previous solutions so that the user gets
the full bandwidth of potential solutions. In the case of Require-
ment (OptimalSolution), it will be equally good as the previous solu-
tions or – for multiple optimization criteria – another instance in the
Pareto front.

ClaferMOO Visualizer5 is an example for an optimizer which sup-
ports handling the Pareto front.

Requirement (IncrementalSolving). In an interactive configuration
scenario, the user sets one variable after the other – without a prede-
fined order. Performance might be increased if the solver supported
incremental solving, i.e., continue with the latest state and not start
from scratch after each user input.

4 http://www.tacton.com/tacton-cpq/
5 http://www.clafer.org/p/software.html

4.5 Explanation
Unless the solver maintains global consistency after each user inter-
action (which is too expensive especially when fast response times
are required, cf. Section 4.3), users can reach a dead end, i.e., a state
where they have to revise a decision to be able to find a solution. It
may also happen that a conflict is produced because the user delib-
erately sets a value that has already been filtered away by the solver,
like in user action 3 in Figure 3.

The goal of explanation is to assist the user in this situation by
suggesting previously made choices to be undone. For a good user
experience it is important that these suggestions are understandable,
i.e., violated constraints should be explained by descriptive prose.

Requirement (Explanation). The solver shall be able to explain in
understandable terms why a current state cannot be extended to a
valid solution.

Usually we distinguish between background constraints and user
constraints. Background constraints originate from the problem spec-
ification, cannot be changed and are assumed to be correct. Only user
constraints, i.e., constraints originating from user interactions, can be
part of explanations. A subset of user constraints is a conflict if the
problem obtained by combining this subset with background con-
straints has no solution. There might be an exponential number of
conflicts that explain the inconsistency of an over-constrained prob-
lem. For this reason, QuickXPlain [11] can be used to compute pre-
ferred explanations. Conflict diagnosis like QuickXPlain can be com-
bined with a hitting-set algorithm to compute minimal diagnoses,
i.e., minimal sets of faulty constraints. A diagnosis is a subset of user
constraints so that the problem becomes consistent when this subset
is removed from it [5].

While methods like QuickXPlain focus on conflicts, i.e., on what
has gone wrong, corrective explanations have been proposed to fo-
cus on how to proceed in interactive solving towards a valid solution.
A corrective explanation is more than a diagnosis in the sense that
it does not just point out constraints (i.e., assignments of values to
variables) that have to be retracted, but also proposes alternative as-
signments that guarantee to yield a solution [16].

Requirement (CorrectiveExplanation). The solver shall be able to
suggest user actions suitable to correct a current state that cannot be
extended to a valid solution.

4.6 Integrability
Today’s typical enterprise IT landscape is a system of systems with
many internal and external interfaces. It must be possible to integrate
a newly developed configurator into the existing infrastructure in or-
der to be accepted and used. While the configurator will use other
components such as a generic solver or a persistence service to fulfil
its tasks, it will also itself be invoked by other components. In order
to get widely adopted, a constraint solver should help companies to
meet the challenges of integration, or at least it should not impose
new ones.

Requirement (LanguageAPI). The constraint solver shall provide
a well-documented API to a programming language that is widely
accepted and used by companies, such as Java.

Command-line interfaces to the solver are appreciated for testing,
but using them for integration is a potential source of problems for
integration and long-term maintenance. For this reason, a command-
line interface alone is not deemed sufficient.

http://www.tacton.com/tacton-cpq/
http://www.clafer.org/p/software.html

Requirement (TestSupport). The constraint solver shall support de-
bugging and automated testing.

This can be implemented by compatibility with existing debug-
gers and testing tools of the host language as well as tool-specific
facilities.

Requirement (MaintainanceSupport). The constraint solver shall
support long-term maintenance of the configurator.

While the exact requirements cannot be anticipated, contributing
factors could be:

• type-safe API language
• portable, standardized language for implementation and API
• use of standard and well-established tools

Requirement (NotificationAPI). The constraint solver API shall
support a notification concept, such as listeners or callbacks. Given
the change of one input variable, which output variables change their
values? What previously violated constraints are now fulfilled and
vice versa?

Requirement (ConstraintLanguage). The constraint solver shall
support a well-established language for constraint definition, such
as MiniZinc or XCSP.

This requirement is not a replacement but complements Require-
ment (LanguageAPI).

Requirement (LicenseCompatibility). The license model shall be
friendly in order to encourage industrial usage.

Companies are reluctant to adopt open-source components with
“sticky” licenses such as GPL, because they fear the legal risks im-
posed on the own intellectual property. A commercial license at a
fair price is more likely to be accepted than a sticky open-source li-
cense. In general, industry-friendly licenses such as BSD and MIT
style licenses will be appreciated.

Note that this also applies to the components depending on the
solver: a dependency on a 3rd-party component with restrictive li-
cense conditions is very likely to inhibit the adoption of the solver.
As a rule of thumb, all dependencies shall have the same or a more
liberal license than the constraint solver component.

Requirement (MinimumDependencies). The list of dependencies
(libraries but also other resources) of the solver shall be as short
as possible, because each added dependency is also regarded as an
additional burden in terms of version management, license and secu-
rity assessment, and long-term maintenance.

In this section we concentrated on the integration of a constraint
solver into a product configurator application via a configuration
API. There are many other aspects for integration of configurators,
e.g., interfaces to customer relation management (CRM), product
data management (PDM), enterprise resource planning (ERP) sys-
tems and the like, or generation of quotations and other documents.
Despite being considered more important by product managers and
consuming much more effort in configurator solutions than product
modeling itself, such aspects are out of scope of this work.

5 SURVEY OF EXISTING SOLVERS
In this chapter we will investigate how some constraint systems sat-
isfy our proposed requirements for an interactive configuration API.

To make our findings easily reproducible we have chosen freely
available systems, each representing a different constraint solving
paradigm: One offers a standardized constraint modelling language,
one is propagation-based, one is a representative of constraint logic
programming, and one is SAT-based. All systems allow the definition
of classical static constraint problems with variables and constraints
and provide basic solving capability (solving, optimization), but they
differ in their support for interactive solving. We use a simplified ver-
sion of the running example to illustrate the different ways to realize
user inputs and domain filtering.

We are aware that there are integrated configuration systems on
the market that fulfil the requirements posed in this paper at least
partially. However, as already mentioned in Section 1, we focus on
pure constraint systems that can be integrated into other applications
without bearing the risk of vendor-lock-in.

5.1 MiniZinc
MiniZinc is a solver-independent constraint modelling language.
The MiniZinc system is free and open-source. It includes various
command line tools and the MiniZinc IDE for editing and solv-
ing MiniZinc models. For solving, the high-level MiniZinc mod-
els are compiled into FlatZinc, which is a low-level standard for
defining constraint problems supported by most current constraint
solvers. One reason for this is the annual MiniZinc challenge, which
is the most popular solving competition for constraint solvers. As
MiniZinc is a de-facto standard for representing constraint prob-
lems, it is a possible solution for a system satisfying Require-
ment (ConstraintLanguage).

Currently there is no way to directly access the domain filtering ca-
pabilities of a solver from MiniZinc. However, users can use solving
to emulate domain filtering. For example, to compute the bounds of a
variable domain the optimization statement of the original Listing 1
can be replaced with the following solve statements to determine the
lower and upper bounds of a variable.

d e t e r m i n e lower bound
s o l v e minimize s t a n d i n g _ r o o m ;

d e t e r m i n e uppe r bound
s o l v e maximize s t a n d i n g _ r o o m ;

MiniZinc does not provide default reasoning out of the box, but
it can be implemented with optimization or special heuristics all of
which can be expressed in MiniZinc. Another option would be to use
a system like MiniBrass6 which adds soft constraints and preferences
to the MiniZinc system.

To integrate MiniZinc into a software system, various approaches
are possible. One such approach consists of manipulating the Mini-
Zinc files programmatically and call the various tools (MiniZinc to
FlatZinc compiler, solver executable) via system calls and standard
I/O. A more efficient way for manipulating MiniZinc models is using
libraries like JMiniZinc7 or PyMzn.8

Another integration option would be to compile the MiniZinc file
to FlatZinc and use the FlatZinc parser of the used solver. This has
the benefit that solving can be controlled by the solver API, but the
downside is that it is not always straightforward to map the low-level
FlatZinc constraints and variables to that of the high-level MiniZinc
model. This mapping is essential for interactive solving as the user
interface must provide feedback in terms of the high-level constraints
and variables.
6 https://isse.uni-augsburg.de/software/minibrass
7 https://github.com/siemens/JMiniZinc
8 http://paolodragone.com/pymzn/

https://isse.uni-augsburg.de/software/minibrass
https://github.com/siemens/JMiniZinc
http://paolodragone.com/pymzn/

5.2 Choco

Choco is a well-established constraint library written in Java. It sup-
ports integer, boolean, set and real variables as well as basic con-
straint expressions and global constraints. Constraint problems are
defined using Choco’s Java API.

The following example shows how interactive configuration can
be realized with Choco’s API. A user input is simulated by post-
ing a constraint containing the assignment selected by the user. The
Choco constraint solver is based on constraint propagation [13]. Con-
straint propagation can not only be utilized during solving, but also
to compute the current domains of the constraint variables. The ex-
ample shows how variable domains are narrowed down by propaga-
tion after calling Solver.propagate(), i.e., Choco satisfies Require-
ment (Filtering).

/ / I n i t i a l domains :
/ / n r _ s e a t s = {0 . . 80}
/ / s t and ing_room = {0 . . 200}
/ / n r _ p a s s e n g e r s = {50 . . 200}
/ / p o s t c o n s t r a i n t

m. a r i t h m (n r _ s e a t s , "+" , s t and ing_room , "=" ,
↪→ n r _ p a s s e n g e r s) . p o s t () ;

/ / User i n p u t
m. a r i t h m (n r _ s e a t s , "=" , 40) . p o s t () ;

/ / Domain f i l t e r i n g
m. g e t S o l v e r () . p r o p a g a t e () ;
/ / Updated domains
/ / n r _ s e a t s = 40
/ / s t and ing_room = {10 . . 160}
/ / n r _ p a s s e n g e r s = {50 . . 200}

If the propagation engine encounters an inconsistency, a
ContradictionException is raised. Choco provides an expla-
nation engine based on [22] for generating explanations for contra-
dictions found during solving. Unfortunately, the explanation engine
is by default not active during propagation. As an alternative a solver-
independent algorithm like QuickXPlain can be adapted for Choco.

Choco does not support default values out of the box. One light-
weight implementation of default values is to use search strategies
similar to the approach in [8].

Choco is implemented in Java and therefore easy to integrate into
an enterprise IT landscape. The source code of Choco is available on
GitHub9 and pre-built libraries are available for Maven.10 As Choco
is open source, missing features can be easily added to the current
code base. On the downside the implementation of the features often
requires detailed knowledge of the API and must be maintained when
the API changes considerably (which has occurred in the past).

5.3 Picat

Picat is a logic-based multi-paradigm language well-suited for solv-
ing constraint problems. Most that will be said about Picat and in-
teractive constraint solving will also apply to other constraint logic
programming systems.

In Picat, constraint programming support is added through the cp
module. After importing the cp module, constraint variables can be
declared with VAR::DOMAIN. Constraints can be formulated with
variable expressions (using special operators preceded with #), pred-
icates and global constraints like all_different etc. The fol-
lowing shows the Picat implementation of the aforementioned exam-
ple. In Picat every additional constraint expression triggers constraint
propagation and the variable domains are adapted accordingly.

9 https://github.com/chocoteam/choco-solver
10 https://search.maven.org/artifact/org.
choco-solver/choco-solver/

P i c a t > NR_SEATS : : 0 . . 80 ,
STANDING_ROOM: : 0 . . 200 ,
NR_PASSENGERS : : 50 . . 200 ,
NR_SEATS + STANDING_ROOM #= NR_PASSENGERS ,
NR_SEATS #= 4 0 .

/ / o u t p u t :
/ / NR_SEATS = 40
/ / STANDING_ROOM = DV_015c90_10 . . 160
/ / NR_PASSENGERS = DV_015d28_50 . . 200

Using the concept of action rules, it is possible to get notified of
domain changes of constraint variables. Action rules have the form
Head, Cond, {Event} => Body. Examples for events are:

• ins(X), when a variable gets instantiated
• bound(X), when the bounds of a variable change
• dom(X,T), when a value T gets excluded from the domain of X

Therefore it is possible to trace all variable domains that have been
effected by a user interaction, cf. Requirement (NotificationAPI).

Picat programs can be executed as shell scripts. Picat allows to
define predicates by C functions. Unfortunately, it is currently not
possible to call Picat from C, so integration must be done via standard
I/O.

5.4 CP-SAT Solver

As an example of a constraint solver based on a non-constraint prop-
agation paradigm we have chosen the SAT-based Google CP-SAT
Solver, which is part of Google OR-Tools.11

As the CP-SAT Solver is SAT-based, it does not provide an API
for accessing the current domain of variables. Therefore it is best
treated as a black-box solver, i.e., by defining the constraint prob-
lem and solving it. Domain filtering can be simulated by calling the
solver for a specific domain value or, as in the example below for
bounded domains, calling minimize/maximize for a variable to com-
pute its lower and upper bound. In the example the lower bound of
the variable standing_room is computed. Of course this strategy
only works for constraint problems where efficient solving is pos-
sible, otherwise the response time of the interactive system would
deteriorate.

from o r t o o l s . s a t . py thon import cp_model
model = cp_model . CpModel ()
n r _ s e a t s = model . NewIntVar (0 , 8 0 , " ")
s t a n d i n g _ r o o m = model . NewIntVar (0 , 2 0 0 , " ")
n r _ p a s s e n g e r s = model . NewIntVar (5 0 , 2 0 0 , " ")

model . Add (sum ([n r _ s e a t s , s t a n d i n g _ r o o m]) == n r _ p a s s e n g e r s)
u i = model . NewIntVar (4 0 , 4 0 , " ")
model . Add (n r _ s e a t s == u i)

S i m u l a t e domain f i l t e r i n g :
C a l l i n g m i n i m i z e f o r a v a r i a b l e
f i n d s t h e lower bound

model . Minimize (s t a n d i n g _ r o o m)
s o l v e r = cp_model . CpSolver ()
s t a t u s = s o l v e r . So lve (model)
p r i n t (s o l v e r . Value (s t a n d i n g _ r o o m))
Outpu t : 10

The CP-SAT solver is written in C++, but via SWIG12 also an
API in Java, C# and Python is provided, which makes it one of
the few constraint solvers available in Python. Regarding Require-
ment (LanguageAPI) this provides a very good integrability for the
basic functionality of the solver, although some special features can
only be accessed through the C++ API.

11 https://github.com/google/or-tools/
12 http://www.swig.org/

https://github.com/chocoteam/choco-solver
https://search.maven.org/artifact/org.choco-solver/choco-solver/
https://search.maven.org/artifact/org.choco-solver/choco-solver/
https://github.com/google/or-tools/
http://www.swig.org/

5.5 Preliminary findings
This brief survey of currently available constraint solvers is by no
means complete. Its main purpose was to illustrate the diversity of
systems available for constraint solving and how each has particular
strengths and weaknesses when it comes to satisfying the proposed
requirements for interactive solving.

The focus of most constraint systems is on modelling and effi-
cient solving. Only few solvers contain special features for interac-
tive solving. Even in the case of solvers based on constraint prop-
agation, the main purpose of constraint propagation is to assist the
solver during search. Another indicator that features like domain fil-
tering are sometimes less important than performance is the fact that
Google recommends to use the new SAT-based constraint solver in-
stead of the legacy constraint propagation based solver contained in
Google’s OR-Tools due to performance.13 Only one system (Picat)
provides a documented mechanism how to get notified about domain
changes of constraints variables. Some solvers like Choco include
an explanation engine. None of the solvers we are aware of supports
default reasoning out of the box. All in all this supports our initial
suspicion that interactive solving is a neglected aspect of constraint
systems.

Of course, the decision which solver to use is complex and will
not be driven by interactive features alone. Most of the interactive
features can be implemented (although sometimes less efficiently)
by treating the solver as a black box.

As can be seen even in our simple example, it is not trivial to trans-
late a constraint problem from one solver to another. To avoid the risk
of getting locked-in to a specific solver API, it might be better to use
a solver-independent constraint modelling language like MiniZinc.

6 CONCLUSION
Real-world configuration problems are often interactive in nature,
i.e., they include the user as an essential factor in the configuration
process. To solve configuration problems, constraint satisfaction is
often used as an underlying reasoning system. In this paper, we have
made two contributions: First, we have proposed a set of require-
ments that a constraint solver should fulfil to support interactive con-
figuration. Second, we have presented the results of a small survey
covering a selected set of non-commercial off-the-shelf constraint
systems.

Our findings show that interactive aspects of configuration are ne-
glected by most constraint systems. They also show that the land-
scape of available system is highly diverse and that each solver has
its own strengths and weaknesses when it comes to satisfying the
requirements proposed in this work.

This is preliminary work. Neither our list of user and solver inter-
actions nor our list of requirements nor our survey is exhaustive. We
focused here on those requirements and tools that we experienced as
most important in our daily work on industrial product configuration.
Future work should extend this study to cover more requirements
(like aspects of guided selling, prediction of default values, recom-
mender features) and more constraint systems. Assessment of each
constraint system shall be done in a more systematic and complete
way and summarized in tables.

We invite the configuration and constraints communities to pro-
pose implementations of constraint systems that are suitable to sup-
port interactive configuration.

13 https://developers.google.com/optimization/cp/cp_
solver

REFERENCES
[1] Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis, ‘Consistency

restoration and explanations in dynamic csps application to configura-
tion’, Artif. Intell., 135(1-2), 199–234, (2002).

[2] Christian Bessiere, ‘Constraint propagation’, In Rossi et al. [18], 29–83.
[3] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker, ‘For-

malizing cardinality-based feature models and their specialization’,
Software Process: Improvement and Practice, 10(1), 7–29, (2005).

[4] Andreas A. Falkner, Gerhard Friedrich, Alois Haselböck, Gottfried
Schenner, and Herwig Schreiner, ‘Twenty-five years of successful ap-
plication of constraint technologies at Siemens’, AI Magazine, 37(4),
67–80, (2016).

[5] Alexander Felfernig, Monika Schubert, and Christoph Zehentner,
‘An efficient diagnosis algorithm for inconsistent constraint sets’, AI
EDAM, 26(1), 53–62, (2012).

[6] David Angelo Ferrucci, Interactive configuration: a logic
programming-based approach, Ph.D. dissertation, Rensselaer Poly-
technic Institute Troy, NY, USA, 1994.

[7] Gerhard Fleischanderl, Gerhard Friedrich, Alois Haselböck, Herwig
Schreiner, and Markus Stumptner, ‘Configuring large systems using
generative constraint satisfaction’, IEEE Intelligent Systems, 13(4), 59–
68, (1998).

[8] Alois Haselböck and Gottfried Schenner, ‘A heuristic, replay-based ap-
proach for reconfiguration’, in Proceedings of the 17th International
Configuration Workshop, Vienna, Austria, September 10-11, 2015.,
eds., Juha Tiihonen, Andreas A. Falkner, and Tomas Axling, volume
1453 of CEUR Workshop Proceedings, pp. 73–80. CEUR-WS.org,
(2015).

[9] Pieter Van Hertum, Ingmar Dasseville, Gerda Janssens, and Marc De-
necker, ‘The KB paradigm and its application to interactive configura-
tion’, TPLP, 17(1), 91–117, (2017).

[10] Lothar Hotz, Thorsten Krebs, and Katharina Wolter, ‘Combining soft-
ware product lines and structure-based configuration – methods and ex-
periences’, in Workshop on Software Variability Management for Prod-
uct Derivation – Towards Tool Support, (2014).

[11] Ulrich Junker, ‘QUICKXPLAIN: preferred explanations and relax-
ations for over-constrained problems’, in Proceedings of the Nineteenth
National Conference on Artificial Intelligence, Sixteenth Conference on
Innovative Applications of Artificial Intelligence, July 25-29, 2004, San
Jose, California, USA, eds., Deborah L. McGuinness and George Fer-
guson, pp. 167–172. AAAI Press / The MIT Press, (2004).

[12] Ulrich Junker, ‘Configuration’, In Rossi et al. [18], 837–873.
[13] Narendra Jussien and Olivier Lhomme, ‘Unifying search algorithms for

CSP’, Rapport technique, École des Mines de Nantes, (2002).
[14] Jeppe Nejsum Madsen, Methods for Interactive Constraint Satisfac-

tion, Master’s thesis, Department of Computer Science, University of
Copenhagen, 2003.

[15] Andreas Hau Nørgaard, Morten Riiskjær Boysen, Rune Møller Jensen,
and Peter Tiedemann, ‘Combining binary decision diagrams and back-
tracking search for scalable backtrack-free interactive product configu-
ration’, In Stumptner and Albert [21], pp. 31–38.

[16] Barry O’Callaghan, Barry O’Sullivan, and Eugene C. Freuder, ‘Gener-
ating corrective explanations for interactive constraint satisfaction’, in
Principles and Practice of Constraint Programming - CP 2005, 11th
International Conference, CP 2005, Sitges, Spain, October 1-5, 2005,
Proceedings, ed., Peter van Beek, volume 3709 of Lecture Notes in
Computer Science, pp. 445–459. Springer, (2005).

[17] Matthieu Stéphane Benoit Queva, Christian W. Probst, and Per Vikkel-
søe, ‘Industrial requirements for interactive product configurators’, In
Stumptner and Albert [21], pp. 39–46.

[18] Handbook of Constraint Programming, eds., Francesca Rossi, Peter van
Beek, and Toby Walsh, volume 2 of Foundations of Artificial Intelli-
gence, Elsevier, 2006.

[19] Stuart J. Russell and Peter Norvig, Artificial Intelligence - A Modern
Approach (3. internat. ed.), Pearson Education, 2010.

[20] Gottfried Schenner and Richard Taupe, ‘Encoding object-oriented mod-
els in MiniZinc’, in Fifteenth International Workshop on Constraint
Modelling and Reformulation, (2016).

[21] Markus Stumptner and Patrick Albert, eds. Proceedings of the IJ-
CAI–09 Workshop on Configuration (ConfWS–09), 2009.

[22] Michael Veksler and Ofer Strichman, ‘A proof-producing CSP solver’,
in Proceedings of the Twenty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010, eds.,
Maria Fox and David Poole. AAAI Press, (2010).

https://developers.google.com/optimization/cp/cp_solver
https://developers.google.com/optimization/cp/cp_solver

	INTRODUCTION
	EXAMPLE
	PROBLEM DEFINITION
	REQUIREMENTS
	Basic interactions
	Preferred and default solutions
	Filtering
	Solving
	Explanation
	Integrability

	SURVEY OF EXISTING SOLVERS
	MiniZinc
	Choco
	Picat
	CP-SAT Solver
	Preliminary findings

	CONCLUSION

