
Lexically Syntactic Characterization by Restarting Automata

Martin Plátek1*, František Mráz1, and Dana Pardubská2†

1 Charles University, Department of Computer Science
Malostranské nám. 25, 118 00 PRAHA 1, Czech Republic

martin.platek@mff.cuni.cz, frantisek.mraz@mff.cuni.cz
2 Comenius University in Bratislava, Department of Computer Science

Mlynská Dolina, 84248 Bratislava, Slovakia
pardubska@dcs.fmph.uniba.sk

Abstract: Our long-term goal is to propose and support
an advanced formal (and hopefully also software) environ-
ment (framework) for Functional (Generative) Description
(FGD) of Czech ([8, 13]), and for similar formal descrip-
tions(see e.g. [6]). This framework should enable to de-
scribe the grammaticality and ungrammaticality of a lan-
guage in a building-kit way. This paper creates one further
step to achieve this goal.

1 Introduction

We introduce and study the notion of lexically syntac-
tic characterization (LSC) and its complexity features by
h-lexicalized two-way restarting automata (hRLWW(i)-
automata), that can rewrite at most i times per cycle, for
i ≥ 1, move in both directions (RL), and can re(w)rite us-
ing two alphabets (WW). Lexically syntactic characteriza-
tion creates a characterization of a lexicalized syntax of a
language. It is composed of four components: basic lan-
guage, h-proper language, h-lexicalized syntactic analy-
sis, and analysis by reduction. The h-lexicalized syntactic
analysis formalizes the informal concept of lexical disam-
biguation of sentences. It is supposed that analysis by re-
duction satisfies the important basic correctness preserv-
ing property in order to express the full syntactic disam-
biguation of basic vocabulary (alphabet).

We stress the sensitivity of syntactic characterizations
on the size of windows of the automata, on the number of
allowed rewrite operations in one reduction of the auto-
mata, and on types of rewrite operations. The LSC’s are
sensitive on the mentioned features in a similar way for
infinite as well as for finite (individual) syntactic charac-
terizations. We present in that way useful tools for new
types of complexity classifications for syntactic phenom-
ena, and we observe that these phenomena in Czech are
with respect to this classifications often simple.

One of our long-term goals is to cover an essential gap
in theoretical tools supporting computational and corpus
linguistics. Chomsky’s and other types of phrase-structure

*The research was partially supported by the grant of the Czech Sci-
ence Foundation No. 19-05704S by the authors stay at Institute of Com-
puter Science, Czech Academy of Sciences.

†The research is partially supported by VEGA 2/0165/16
Copyright ©2019 for this paper by its authors. Use permitted under

Creative Commons License Attribution 4.0 International (CC BY 4.0).

grammars do not support syntactic lexical disambiguation
nor analysis by reduction as these grammars work with
categories bound to individual constituents related to con-
stituent syntactic analysis. They do not support modeling
of analysis by reduction with any kind of correctness pre-
serving property, they do not support any type of sensi-
tivity to the size of individual grammar (automata) rules
(see several normal forms for context-free grammars, like
Chomsky normal form [2]), and, finally, they do not sup-
port any kind of natural classification of finite syntactic
constructions related to (natural) languages.

On the other hand, in traditional and corpus linguistics,
only finite language phenomena can be observed. Now
the lexically syntactic characterizations of hRLWWC(i)-
automata with fixed window size, and in strong or weak
cyclic form allow common classifications of finite syntac-
tic phenomena as well as classifications of their infinite
relaxations. All these classifications are based on the ba-
sic correctness preserving property and the strong (weak)
cyclic form. The concept of hRLWWC(i)-automaton of-
fers a rich set of constraints for expressing the grammati-
cality and ungrammaticality of individual natural language
phenomena which are here formally expressed by LSC.

Let us recall that for restarting automata the (simple or
general) monotonicity property characterizes context-free
languages. We distinguish in a new way degrees of com-
plexity of finite and infinite syntactic characterizations in
order to naturally classify natural-language syntactic phe-
nomena, which should not be considered (by linguistic in-
tuition) as context-free. We are able to capture, e.g., the
well-known Dutch sentence example below, see, e.g., the
discussion in [5], which is, on one hand, finite, i.e. for-
mally it is regular, but on the other hand, it is often consid-
ered (informally) as non-context free.

Let us recall that example. It is in the form of one branch
of (naive, i.e. without the lexical disambiguation) analysis
by reduction.

... dat Jan Piet Marie de kinderen zag helpen leren
zwemmen

... that Jan Piet Marie the children saw help teach swim
The first reduction deletes the (isolated) words “Marie”
and “leren”:

... dat Jan Piet de kinderen zag helpen zwemmen

... that Jan Piet the children saw help swim

The second reduction deletes the (isolated) words “Piet”
and “help”:

... dat Jan de kinderen zag zwemmen

... that Jan the children saw swim
Example 1 at the end of this paper presents another nat-

ural language example with the full lexical disambiguation
and full analysis by reduction.

A model of restarting automaton that formalizes lexi-
calized syntactic disambiguation in a similar way as cate-
gorial grammars (see, e.g., [1]) – the h-lexicalized restart-
ing automaton (hRLWW) – was introduced in [10]. This
model is obtained from the two-way restarting automa-
ton by adding a symbol-to-symbol morphism h that as-
signs an input symbol to each working symbol. This mor-
phism models the grammatical disambiguation of individ-
ual word-forms and punctuation marks. Then the basic
language LC(M) of an hRLWW-automaton M consists of
all words over the working alphabet of M that are accepted
by M, and the h-proper language LhP(M) of M is obtained
from LC(M) through the morphism h.

Further, the set of pairs {(h(w),w) | w ∈ LC(M)}, de-
noted as LA(M), is called the h-lexicalized syntactic anal-
ysis (LSA) by M. Thus, in this setting, the auxiliary sym-
bols themselves play the role of the tagged items. That is,
each auxiliary symbol b can be seen as a pair consisting
of an input symbol h(b) and some additional syntactico-
semantic information (tags, categories).

Analysis by reduction is traditionally learned in Czech
schools. It is used to analyze sentences of natural lan-
guages with a higher degree of word-order freedom like,
e.g., Czech, Latin, or German. Usually, a human reader is
supposed to understand the meaning of a given sentence
before he starts to analyze it ([12]); h-lexicalized syntactic
analysis based on the analysis by reduction (AR) simulates
such a behavior by analysis of sentences, where morpho-
logical and syntactical tags have been added to the word-
forms and punctuation marks (see, e.g., [8]). An important
property of analysis by reduction is the so-called correct-
ness preserving property. Using hRLWW(i)-automata the
linguistic correctness preserving property is simulated by
the formal notion of basic correctness preserving property.

Actually, the constrained hRLWW(i)-automata that are
in a strong cyclic form preserve the essential part of the
power of hRLWW(i)-automata but simultaneously they
allow to extend the complexity results obtained for the
classes of infinite syntactic characterizations also into the
classes of finite syntactic characterizations. This is useful
for classifications and the learning of individual phenom-
ena in computational and corpus linguistics, where all the
(syntactic) observation are of a finite nature. It also allows
to design techniques for the localization of syntactic errors
(grammar-checking).

Finally, we introduce the formal concept of lexically
syntactic characterization (LSC), which creates a formal
basis for an environment for syntactic characterizations
of natural languages. An important component of LSC
is analysis by reduction. Analysis by reduction is in

its principle non-deterministic and correctness preserving.
That is the reason for the use of non-deterministic, cor-
rectness preserving restarting automata. Also, the con-
cept g-monotonicity is forced by the modelling of non-
deterministic analysis by reduction. The correctness pre-
serving property represents the full disambiguation for the
basic alphabet, in other words for the (manually devel-
oped) lexical tags and/or categories.

We show some essential refinements of hierarchies re-
lated to the Chomsky hierarchy for formal languages in
the area of LSC. We obtain in this way new tools for a
natural new type of classification of syntactic phenomena
connected with lexicalized syntax formulated in the terms
of the theory of automata and formal languages. Let us yet
stress that the achieved results are obtained through basic
languages and the relation between basic and input alpha-
bets (h-morphism) as the basis for this type of building-kit
considerations. It is not possible to obtain similar tools
by considering the well-known input languages which are
commonly used in the automata theory, and in the theory
of restarting automata, as well.

2 Definitions

By ⊆ and ⊂ we denote the subset and the proper subset
relation, respectively. Further, we will sometimes use reg-
ular expressions instead of the corresponding regular lan-
guages. Finally, throughout the paper λ will denote the
empty word.

We start with the definition of the two-way restarting
automaton.

Definition 1. Let i be a positive integer. A two-way restart-
ing automaton, an RLWW(i)-automaton for short, is a ma-
chine with a flexible tape and a finite-state control. It
is defined through a 9-tuple M = (Q,Σ,Γ,¢,$,q0,k, i,δ),
where Q is a finite set of states, Σ is a finite input alpha-
bet, and Γ(⊇ Σ) is a finite working alphabet. The symbols
from ΓrΣ are called auxiliary symbols. Q and Γ are dis-
joint. Further, the symbols ¢,$ 6∈ Γ, called sentinels, are
the markers for the left and right border of the workspace,
respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size
of the read/write window, i ≥ 1 is the number of allowed
rewrites in a cycle (see later), and

δ : Q×PC (≤k)→P((Q×{MVR,MVL,SL(v)}) ∪
{Restart,Accept,Reject})

is the transition relation. Here P(S) denotes the powerset
of a set S, PC (≤k) denotes the set of possible contents of
the read/write window of size k:

({¢} ·Γk−1)∪Γ
k ∪ (Γ≤k−1 · {$})∪ ({¢} ·Γ≤k−2 · {$})

and v ∈PC (≤k−1).

Being in a state q ∈ Q and seeing u ∈PC (≤k) in its win-
dow, the automaton can perform six different types of tran-
sition steps (or instructions):

1. A move-right step assumes that (q′,MVR) ∈ δ (q,u),
where q′ ∈Q and u does not end by the right sentinel $.
This move-right step causes M to shift the window one
position to the right and to enter state q′.

2. A move-left step assumes that (q′,MVL) ∈ δ (q,u),
where q′ ∈ Q and u does not start with the left sen-
tinel ¢. It causes M to shift the window one position to
the left and to enter state q′.

3. A rewrite step with left shortening (an SL-step) as-
sumes that (q′,SL(v)) ∈ δ (q,u), where q′ ∈ Q, v ∈
PC (≤k−1), v is shorter than u, and v contains all the
sentinels that occur in u (if any). It causes M to re-
place u by v, to enter state q′, and to shift the window
by |u| − |v| items to the left – but at most to the left
sentinel ¢ (that is, the contents of the window is ‘com-
pleted’ from the left, and so the distance to the left sen-
tinel decreases, if the window was not already at ¢).

4. A restart step assumes that Restart ∈ δ (q,u). It causes
M to place its window at the left end of its tape, so
that the first symbol it sees is the left sentinel ¢, and to
reenter the initial state q0.

5. An accept step assumes that Accept∈ δ (q,u). It causes
M to halt and accept.

6. A reject step assumes that Reject ∈ δ (q,u). It causes
M to halt and reject.

A configuration of an RLWW(i)-automaton M is a word
αqβ , where q∈Q, and either α = λ and β ∈ {¢}·Γ∗ ·{$}
or α ∈ {¢} · Γ∗ and β ∈ Γ∗ · {$}; here q represents the
current state, αβ is the current contents of the tape, and
it is understood that the read/write window contains the
first k symbols of β or all of β if |β | < k. A restarting
configuration is of the form q0¢w$, where w ∈ Γ∗.

In general, an RLWW(i)-automaton M is nondetermin-
istic, that is, δ (q,u) can contain two or more elements,
for some state q and contents of the read/write window
u, and thus, there can be more than one computation that
start from a given restarting configuration. If this is not the
case, the automaton is deterministic.

A computation of M is a sequence C =C0,C1, . . . ,C j of
configurations of M, where C0 is a restarting configuration
and C`+1 is obtained from C` by a step of M, for all 0 ≤
` < j. In the following we only consider computations of
RLWW(i)-automata which are finite and end either by an
accept or by a reject step.
Cycles and tails: Any finite computation of an RLWW(i)-
automaton M consists of certain phases. A phase, called
a cycle, starts in a restarting configuration, the window
moves along the tape performing non-restarting steps un-
til a restart step is performed and thus a new restarting
configuration is reached. If no further restart step is per-
formed, any finite computation necessarily finishes in a
halting configuration – such a phase is called a tail. It is
required that in each cycle RLWW(i)-automaton executes

at most i rewrite steps (of type SL) but at least one SL-step.
Moreover, it must not execute any rewrite step in a tail.

This induces the following relation of cycle-rewriting
by M: u ⇒c

M v iff there is a cycle that begins with the
restarting configuration q0¢u$ and ends with the restart-
ing configuration q0¢v$. The relation⇒c∗

M is the reflexive
and transitive closure of ⇒c

M . We stress that the cycle-
rewriting is a very important feature of an RLWW(i)-
automaton. As each SL-step is strictly length-reducing,
we see that u⇒c

M v implies that |u| > |v|. Accordingly,
u⇒c

M v is also called a reduction by M.
A basic (or characteristic) word w ∈ Γ∗ is accepted by

M if there is a computation which starts with the restarting
configuration q0¢w$ and ends by executing an accept step.
By LC(M) we denote the set of all words from Γ∗ that are
accepted by M; we say that M recognizes (or accepts) the
basic (or characteristic1) language LC.

We define the set of correct reductions by M as
CRS(M) = {u⇒c

M v | u,v ∈ LC(M)}
the analysis by reduction of a word u ∈ LC(M) by M as

AR(M,u) = {x⇒c
M z ∈CRS(M) | u⇒ c∗

M x}, and
the analysis by reduction recognized by M as

AR(M) = {AR(M,u) | u ∈ LC(M)}.
Finally, we come to the definition of the h-lexicalized

RLWW(i)-automaton.

Definition 2. Let i be a positive integer. An h-lexicalized
RLWW(i)-automaton, or an hRLWW(i)-automaton, is a
pair M̂ = (M,h), where M = (Q,Σ,Γ,¢,$,q0,k, i,δ) is an
RLWW(i)-automaton and h : Γ → Σ is a letter-to-letter
morphism satisfying h(a) = a for all input letters a ∈ Σ.
The basic language LC(M̂) of M̂ is the language LC(M),
and the analysis by reduction AR(M̂) is the analysis by
reduction AR(M).

Further we say that M̂ recognizes (or accepts) the h-
proper language LhP(M̂) = h(LC(M)).

Finally, the set LA(M̂) = {(h(w),w) | w ∈ LC(M)} is
called the (h-)lexicalized syntactic analysis (shortly LSA)
by M̂.

For x∈ Σ∗, LA(M̂,x) = {(x,y) | y∈ LC(M),h(y) = x} is
the lexicalized syntactic analysis for x by M̂. We see that
LA(M̂,x) is non-empty only for x from LhP(M̂).

Let us note that LSA formalizes the linguistic notion of
lexical disambiguation of sentences. Each auxiliary sym-
bol x ∈ ΓrΣ of a word from LC(M̂) can be considered as
a disambiguated input symbol h(x).

Definition 3. (Basic Correctness Preserving Property)
Let M be an hRLWW(i)-automaton. If u ⇒c∗

M v and
u ∈ LC(M) induce that v ∈ LC(M), and therewith h(v) ∈
LhP(M), and (h(v),v) ∈ LA(M), then we say that M is ba-
sically correctness preserving.

The following fact ensures the transparency for compu-
tations of deterministic hRLWW(i)-automata.

1The subscript C is preserved from previous papers where basic lan-
guages were called characteristic languages.

Fact 1. Let M be a deterministic hRLWW(i)-automaton.
Then M is basically correctness preserving.

Finally, we introduce the concept of lexically syn-
tactic characterization (LSC). Let M be an hRLWW(i)-
automaton, and u ∈ LC(M). We take as LSC(M,u) =
{(u,h(u),AR(M,u))}. We say that LSC(M,u) is the lex-
ically syntactic characterization of u by M. Further we
take as LSC(M) = {LSC(M,u) | u ∈ LC(M)}. We say that
LSC(M) is the lexically syntactic characterization (LSC)
recognized by M.

Notations. For brevity, the prefixes det- and bcpp-
will be used to denote the property of being determinis-
tic and basically correctness preserving, respectively. For
any class A of automata, LC(A) will denote the class of
basic languages that are recognized by automata from A,
and LhP(A) will denote the class of h-proper languages
that are recognized by automata from A. LA(A) will de-
note the class of LSA (h-lexicalized syntactic analyses)
that are defined by automata from A. AR(A) will denote
the class of AR’s (analyses by reduction) that are defined
by automata from A. LSC(A) will denote the class of LSC
(lexically syntactic characterizations) that are defined by
automata from A.

For a natural number k ≥ 1, LC(k-A), LhP(k-A),
LA(k-A), AR(k-A), LSC(k-A) will denote the class of
basic languages, h-proper languages, LSA’s, AR’s, and
LSC’s respectively, that are recognized by those automata
from A that use a read/write window of size at most k. In
other words the prefix k- means the restriction on the size
of the read/write window.

2.1 Further Refinements, and Constraints on
hRLWW(i)-Automata

Here we introduce some constrained types of rewrite steps
(instructions) whose introduction is motivated by different
types of linguistic reductions.

A delete-left step, written as (q′,DL(v)) ∈ δ (q,u), is a
special type of an SL-step (q′,SL(v)) ∈ δ (q,u), where v
is a proper (scattered) subsequence of u, containing all the
sentinels from u (if any). It causes M to replace u by v (by
deleting excessive symbols), to enter state q′, and to shift
the window by |u|− |v| symbols to the left, but at most to
the left sentinel ¢.

A contextual-left step, written as (q′,CL(v)) ∈ δ (q,u),
is a special type of DL-step (q′,DL(v)) ∈ δ (q,u), where
u = v1u1v2u2v3, u1,u2 ∈ Γ∗, |u1u2| ≥ 1 and v = v1v2v3
such that v contains all the sentinels from u (if any). It
causes M to replace u by v (by deleting the factors u1
and u2 of u), to enter state q′, and to shift the window by
|u| − |v| symbols to the left, but at most to the left sen-
tinel ¢.

An RLWW(i)-automaton is called an RLWWD(i)-
automaton if all its rewrite steps are DL-steps. An
RLWW(i)-automaton is called an RLWWC(i)-automaton
if all its rewrite steps are CL-steps.

In the following we will use the corresponding nota-
tion also for subclasses of RLWW(i)- and hRLWW(i)-
automata. Additionally, for a type X of RLWW(i)-
automata and an integer k ≥ 1, prefix k- will denote the
subclass of X of automata of windows size at most k. For
example, 3-det-hRLWWC(i) denotes the class of deter-
ministic h-lexicalized RLWWC(i)-automata with window
size at most 3.

We recall the notions of monotonicity and g-
monotonicity (see [4]) as an important constraint for com-
putations of RLWW(i)-automata. Let M be an RLWW(i)-
automaton, and let C = Ck,Ck+1, . . . ,C j be a sequence of
configurations of M, where C`+1 is obtained by a single
transition step from C`, k ≤ ` < j. We say that C is a
subcomputation of M. If C` = αqβ , then |β | is the right
distance of C`, which is denoted by Dr(C`). We say that
a sub-sequence (C`1 ,C`2 , . . . ,C`n) of C, where k ≤ `1 <
`2 · · · < `n ≤ j, is monotone if Dr(C`1) ≥ Dr(C`2) ≥ ·· · ≥
Dr(C`n). A computation of M is called monotone if the
corresponding sub-sequence of rewrite configurations is
monotone. Here a configuration is called a rewrite con-
figuration if in this configuration an SL-step is being ap-
plied. Finally, M itself is called g-monotone if for each
accepting computation of M there is an accepting com-
putation of M with the same first (starting) configuration
that is monotone. M is called monotone if all its computa-
tions are monotone. Note, that by notions of monotonic-
ity the sequence of all rewritings in a sub-computation is
considered, and the cycles are not considered. We use
the prefix gmon- (mon-) to denote g-monotone (mono-
tone) types of hRLWW(i)-automata. We can see that any
mon-hRLWW(i)-automaton is also a gmon-hRLWW(i)-
automaton. We work here with the g-monotonicity (cf.
[4]) in order to adequately model the non-deterministic
character of analysis by reduction. Non-deterministic
analysis by reduction is traditionally used to determine
the syntactic (in)dependencies in natural language (e.g.,
Czech) sentences (see, e.g., [7, 6]).

A restriction of the form of restarting automata called
strong cyclic form can be transferred to hRLWW(i)-
automata. An hRLWW M is said to be in strong cyclic
form if |uv| ≤ k for each halting configuration ¢uqv$ of M,
where k is the size of the read/write window of M. Thus,
before M can halt, it must erase sufficiently many letters
from its tape. The prefix scf- will be used to denote restart-
ing automata that are in strong cyclic form. The concept
of strong cyclic form is useful for the presented sensitivity
properties, and for techniques of grammar-checking (lo-
calization of syntactic errors) by hRLWW(i)-automata.

3 On Power and Sensitivity of Lexicalized
Syntactic Characterizations

In this section we will study lexicalized syntactic char-
acterizations (LSC) of scf-hRLWW(i)-automata by the
study of their components, i.e. basic and h-proper lan-

guages, LSA’s, and AR’s. We will see that, with re-
spect to LSC, scf-hRLWW(i)-automata (and their variants)
are sensitive to several types of constraints, as, e.g., the
window size, number of SL-operations (rewritings) in a
cycle, (non)determinism, and types of allowed rewrite-
operations. Through these constraints we essentially es-
tablish and refine the classifications which are derived
from the linguistically relevant part of the Chomsky hier-
archy and we will do so in several phases. In the first phase
we refine the part corresponding to context-sensitive lan-
guages by the number of rewritings in a cycle. Next, by
using the window size, we refine the individual areas of
LSC that are given by the number of rewritings in a cycle.
Finally, we use the AR’s for the refinement by the non-
determinism and by the three different types of rewritings
(SL, DL, CL). We consider all those types of constraints
which are highly relevant for linguistic classifications.

The complexity of sentences can be measured also
by the number of used reductions. That is the reason
to consider the following concepts. For any RLWW(i)-
automaton M, we use fin(j)-LC(M) and fin(j)-LhP(M) to
denote the subsets of LC(M) and LhP(M), respectively,
consisting of words accepted by computations with at most
j reductions (cycles). Analogous notation is used also
with any type X of RLWW(i)-automaton: fin(j)-LC(X)
and fin(j)-LhP(X) denote the subclasses of LC(X) and
LhP(X), respectively, consisting of languages accepted by
computations with at most j reductions (cycles). Simi-
larly we use the prefix fin(j)- for the classes of lexically
syntactic characterizations, syntactic analyses, and anal-
yses by reduction. E.g., fin(j)-LSC(scf-RLWWC(i)) de-
notes the class of syntactic characterizations obtained from
LSC(scf-RLWWC(i)) by allowing only accepting compu-
tations with at most j reductions.

3.1 Sensitivity of scf-hRLWW(i)-Automata

Let us yet note that the prefix bcpp- means the basic cor-
rectness preserving property.

Subsequent sections are focused on results related to the
sensitivity of scf-hRLWW(i)-automata. In particular, we
show the sensitivity of the above mentioned automata on
the size of the windows, and on the number of rewritings
in a cycle.

Theorem 2. For all i, j,k ≥ 1 it holds the following:

(1) LC(k-det-mon-scf-RLWWC(i))r
LhP(k-scf-hRLWW(i−1)) 6= /0,

(2) fin(j)-LC(k-det-mon-scf-RLWWC(i))r
LhP(k-scf-hRLWW(i−1)) 6= /0,

(3) fin(j)-LC(k-det-mon-scf-RLWWC(1))r
LhP((k−1)-scf-hRLWW(i)) 6= /0.

Proof. (1) For each i,k ≥ 1, the language
L1(i,k) = {ak·i·`+k | ` ≥ 0} is both the basic and
the h-proper language accepted by the following

k-det-mon-scf-RLWWC(i)-automaton M(i,k)
1 . On input an,

for some n≥ 0, the automaton:

1. rejects in a tail, if n < k;

2. accepts in a tail, if n = k;

3. deletes an by performing d n
k e rewrites (all of then at

the right end of the tape) and restarts, if i · k ≥ n > k;

4. rewrites the word an into the word an−k·i by executing
i SL-steps each of which deletes the suffix ak of the
current tape contents and restarts, if n > k · i.

Evidently, M(i,k)
1 can be deterministic, monotone and in

strong cyclic form.
Next we show that L(i,k)

1 cannot be an h-proper language
of any RLWW(i′)-automaton in strong cyclic form with
i′ < i. For a contradiction, let M be a k-scf-hRLWW(i′)-
automaton such that Lhp(M) = L(i,k)

1 , where i′ < i. As
w = ak·i+k ∈ L(i,k)

1 , |w| > k, and as M is in strong cyclic
form, each accepting computation of M on input w must
start by a cycle. As ak is the only shorter word in L(i,k)

1 ,
the automaton must rewrite ak·i+k into a word w′ such that
h(w′) = ak. Hence, it must delete k · i symbols. However,
this is not possible, as M can rewrite at most k · i′ < k · i
symbols in a cycle – a contradiction.

(2) For each i, j,k≥ 1, the language fin(j)-LC(M
(i,k)
1) =

{ak·i·`+k | j ≥ ` ≥ 0} is accepted by computations of the
k-det-mon-scf-RLWWC(i)-automaton M(i,k)

1 with at most
j reductions.

In the same way as in the proof of the above claim, we
can show that the language fin(j)-LC(M

(i,k)
1) cannot be

h-proper language of any k-scf-hRLWWC(i′)-automaton
with i′ < i.

(3) It is easy to construct a deterministic k-RLWWC-
automaton M(k)

2 accepting the language L(k)
2 = {ak}. On

input an, for some n≥ 0, the automaton:

1. rejects in a tail, if n < k;

2. accepts in a tail, if n = k;

3. deletes the first occurrence of a and restarts, if n= ` ·k
for some ` > 1;

4. deletes the suffix ak and restarts, if n = ` · k+m for
some `≥ 1 and 1≤ m≤ k−1.

Evidently, M(k)
2 is deterministic, monotone and in strong

cyclic form. Moreover, M(k)
2 accepts L(k)

2 in computations
which have no cycle.

Each non-empty h-proper language accepted by a (k−
1)-scf-hRLWW(i)-automaton M contains at least one word
of length at most (k − 1). The language L(k)

2 is non-
empty but it does not contain any word of length at most
k− 1. Hence it cannot be the h-proper language of any
(k−1)-scf-hRLWW(i)-automaton.

Obviously, LC(X) ⊆ LhP(X), for any type X of
hRLWW-automata. Hence with Theorem 2 we have the
following consequence.

Corollary 1. For all i,k ≥ 1 it holds the following:

(1) LC(k-bcpp-scf-hRLWW(i)) ⊂
LC(k-bcpp-scf-hRLWW(i+1)),

(2) LhP(k-bcpp-scf-hRLWW(i)) ⊂
LhP(k-bcpp-scf-hRLWW(i+1)).

For bcpp-scp-automata without restriction on the size
of read/window we have the following.

Theorem 3. For all i≥ 1 it holds the following:

(1) LC(bcpp-scf-hRLWW(i−1)) ⊂
LC(bcpp-scf-hRLWW(i)),

(2) LhP(bcpp-scf-hRLWW(i−1)) ⊂
LhP(bcpp-scf-hRLWW(i)).

Proof. The inclusion relations in both claims follow di-
rectly from the definitions. For any i ≥ 1, we prove
that both inclusions are proper using the following sam-
ple language L(i)

3 = {(anbn)i | n ≥ 0}. This language
is the basic and also the h-proper language of the fol-
lowing 2-det-scf-hRLWWD(i)-automaton M(i)

3 . On input
w ∈ {a,b}∗, the automaton:

1. accepts, if w = λ ,

2. deletes i occurrences of ab (one in each segment
a+b+) and restarts, if w is from (a+b+)i.

3. deletes the first occurrence of a and restarts, if w is
from (a+b+)` for some positive integer ` 6= i,

4. deletes the first occurrence of a and restarts, if w starts
by a and w is not from (a+b+)i,

5. deletes the first occurrence of a and restarts, if w starts
by b and contains at least one a,

6. deletes the last occurrence of b and restarts, if w = b`

for some ` > 1,

7. rejects, if w = b.

The automaton does not use any auxiliary symbol. It is
easy to see that L(M(i)

3) = LC(M
(i)
3) = LhP(M

(i)
3) = L(i)

3 .

As the automaton M(i)
3 is deterministic, it has the basic

correctness preserving property. Moreover, the automaton
is in strong cyclic form.

On the other hand, let us suppose that L(i)
3 is the basic

language of a k-scf-hRLWW(i′)-automaton M, for some
i′ < i. On input w = (anbn)i for a sufficiently large n� k,
the automaton M must perform at least one cycle w⇒c

M w′,
where w′ = (an− jbn− j)i, for some j, k > j > 0. For that,
at least i rewriting steps are necessary – a contradiction.

In a similar way we can prove that L(i)
3 cannot be the

h-proper language of any scf-hRLWW(i′)-automaton, for
any i′ < i.

3.2 Relation of LSA and LSC to context-free and
context-sensitive languages.

For k ≥ 1, let k-CFL denote the class
LhP(k-gmon-bcpp-scf-hRLWW(1)).

Theorem 4. Let X ∈ {hRLWW(1), hRLWWD(1),
hRLWWC(1)}, and k ≥ 1. Then

(1) LhP(bcpp-gmon-scf-X) =CFL,

(2) LC(k-bcpp-gmon-scf-X)⊂ k-CFL,

(3) LhP(k-bcpp-gmon-scf-X)⊂CFL.

Proof. The h-proper languages of (mon-hRLWW(1))-
automata are context-free because the basic languages of
monotone hRLWW(1)-automata are context-free [10] and
the class of context-free languages is closed under the ap-
plication of morphisms. This can be easily extended to
gmon-hRLWW(1)-automata similarly as in [4].

In [10], it was shown that each context-free lan-
guage is an h-proper language of a det-mon-RLWWC(1)-
automaton in a weak cyclic form. The weak cyclic form
differs from the strong cyclic form in that it does not re-
quire to reject only words of length not longer than the size
of the window. However, the proof from [10] can be easily
adapted to the strong cyclic form either.

To prove both proper inclusions we can use the
context-free language L(k+1)

2 which cannot be h-proper
(and therefore also not be the basic) language of any
k-scf-RLWW(1)-automaton (see the proof of Theorem 3
(3)).

The first claim of Theorem 4 presents the robustness
of the class of h-proper languages with respect to several
subclasses of gmon-scf-hRLWW(1)-automata. The claims
(2) and (3) support the adequacy of the following notions
which establish relations of LSA and LSC to context-free
languages and to refined context-free languages.

Notations. We denote for k ≥ 1 by k-CFLA the class
LA(k-gmon-bcpp-scf-hRLWW(1)), and by k-CFLSC the
class LSC(k-gmon-bcpp-scf-hRLWW(1)). With this de-
notations we refine and enhance by hRLWW(1)-automata
the concept of (restricted) context-free languages to the
concept of context-free lexicalized syntactic analysis and
to the concept of context-free lexicalized syntactic charac-
terization. We can see that the union of k-CFL creates the
class of CFL. We denote by CFLA the union of k-CFLA,
and by CFLSC the union of k-CFLSC, for all k ≥ 1.

3.3 Hierarchies of LSC’s and LSA’s.

Notations. For i ≥ 1 we denote by LSC(i) the class
LSC(bcpp-scf-hRLWWC(i)) and by LSA(i) the class
LA(bcpp-scf-hRLWWC(i)). Taking the union over all
natural numbers we obtain classes LSC =

⋃
i∈N LSC(i)

and LSA=
⋃

i∈N LSA(i).

Corollary 2. For all i≥ 1 it holds the following:

(1) CFLSC⊂ LSC(1) , CFLA⊂ LSA(1) ,

(2) LhP(bcpp-scf-hRLWWC(i))⊂ CSL.

Proof. Claim (1) follows from Theorem 4. To prove asser-
tion (2), note that RLWW(i)-automaton can be simulated
by a linear bounded automaton. On the other hand, the
context-sensitive language Le = {a2n | n ≥ 1} cannot be
the h-proper language of any k-scf-hRLWW(i)-automaton
M, for any i,k≥ 1, as, e.g., it should accept the input word
w = a2ik

. Because |w| > k, the automaton must perform
at least one cycle w⇒c

M w′ and h(w′) must belong to the
h-proper language of M. However, this is not possible, as
the automaton can shorten its tape contents by at most ik
symbols in one cycle and therefore 2ik > |w′| > 2ik−1 and
hence h(w′) 6∈ Le.

The sensitivity of hRLWW(i)-automata on the size of
their windows can be utilized to essentially refine the hi-
erarchies of LSC’s. These refined hierarchies yield a fine
classification of syntactic phenomena in lexicalized syn-
taxes of natural languages.

Note that prefix k- indicates the window size of
the model in mind. So, k-LSC(i) is the class
LSC(k-bcpp-scf-hRLWWC(i)); analogously k-LSA(i),
and k-LSA. We say that k-LSC(i) is the set of k-restricted
lexically syntactic characterizations of degree i, k-LSA(i)
is the set of k-restricted lexically syntactic analyses of de-
gree i. k-LSC is the set of k-restricted lexically syntactic
characterizations and k-LSA is the set of k-restricted lexi-
cally syntactic analyses.

Then, the next corollary easily follows from Theorem 3.

Corollary 3. For all i≥ 1, k ≥ 2 it holds the following:

(1) k-CFL⊂ (k+1)-CFL

(2) k-LSC(i)⊂ (k+1)-LSC(i)
k-LSA(i)⊂ (k+1)-LSA(i)

(3) k-CFLSC⊂ k-LSC(i)⊂ k-LSC(i+1) ⊂ k-LSC
k-CFLA ⊂ k-LSA(i)⊂ k-LSA(i+1) ⊂ k-LSA.

Let us recall that in order to bound the number of reduc-
tions in the computation we add prefix fin(j) to language
constructions class.

Corollary 4. For all i, j ≥ 1, k ≥ 2 it holds the following:

(1) k-fin(j)-LSC(i)⊂ k-fin(j)-LSC(i+1),
k-fin(j)-LSA(i)⊂ k-fin(j)-LSA(i+1),

(2) k-fin(j)-LSC(i)⊂ (k+1)-fin(j)-LSC(i),
k-fin(j)-LSA(i)⊂ (k+1)-fin(j)-LSA(i).

Proof. The Corollary also follows from Corollary 1.

The previous two corollaries witnesses the similarity
of classifications between infinite and parametrized finite
LCS’s.

3.4 On Sensitivity of LSC’s by analysis by reduction

We start this subsection by a small linguistic example
which will help us to demonstrate some of the consider-
ations about sensitivity of LSC’s which is derived from
the analysis by reduction.

Example 1. Fig.1 below illustrates analysis by reduction
corresponding to lexically disambiguated (tagged) sen-
tence:
(1) [Rozhodl .Pred] [se.AuxT] [dnes.Adv] [odstoupit.Obj]
[..AuxK]

‘(He) decided – REFL – today – (to) resign – .’
‘He decided to resign today.’

that corresponds to the original untagged sentence:
(2) Rozhodl se dnes odstoupit.

We do not let the reflexive particle ’se’ to be deleted,
because we consider a deletion of a sole reflexive particle
a forbidden reduction.

Rozhodl.Pred se.AuxT odstoupit.Obj ..AuxK

Rozhodl.Pred se.AuxT dnes.Adv odstoupit.Obj ..AuxK

Rozhodl.Pred se.AuxT ..AuxK

Rozhodl.Pred se.AuxT dnes.Adv ..AuxK

Figure 1: Lexical disambiguation and analysis by reduc-
tion of tagged sentence (1).

In order to obtain more fine and practical type of con-
straint we refine the notion of strong cyclic form. An k-
hRLWW M is said to be in strong cyclic form of degree i
if |uv| ≤ k · i for each halting configuration ¢uqv$ of M.
The prefix scf(i)- will be used to denote restarting auto-
mata that are in strong cyclic form of degree i. We will
illustrate the notion by the previous example.

The analysis by reduction from the previous ex-
ample has two branches. It is not hard to see
that it can be simulated by a nondeterministic
1-bcpp-gmon-scf(3)-hRLWWC(1)-automaton Mex with
the basic alphabet (vocabulary)

{[Rozhodl.Pred], [se.AuxT], [dnes.Adv],
[odstoupit.Obj], [..AuxK]},

with the input alphabet (vocabulary)

{Rozhodl, se, dnes, odstoupit, .}

and the morphism h given by the following set of equali-
ties:

h([Rozhodl.Pred]) = Rozhodl, h([se.AuxT) = se,
h([odstoupit.Obj]) = odstoupit, h([dnes.Adv]) = dnes,
h([..AuxK]) = ‘.’.

As no deterministic restarting automaton can provide an
analysis by reduction with more than one branch, we ob-
tain the following corollary.

Corollary 5. For all i,k ≥ 1, j ≥ 3 it holds the following:

(1) AR(k-det-mon-scf(j)-hRLWW(1))⊂
AR(k-bcpp-gmon-scf(j)-hRLWW(1)),

(2) LSC(k-det-mon-scf(j)-hRLWW(1))⊂
LSC(k-bcpp-gmon-scf(j)-hRLWW(1)),

(3) AR(k-det-scf(j)-hRLWW(i))⊂
AR(k-bcpp-scf(j)-hRLWW(i)),

(4) LSC(k-det-scf(j)-hRLWW(i))⊂
LSC(k-scf(j)-hRLWW(i)).

It is not hard to see that similar corollaries hold also if
we add different combinations of constraints for the size
of the window, for the number of allowed reductions, and
for the different types of rewriting.

The following proposition can be easily shown using a
set of small (finite) artificial examples of analysis by re-
duction.

Corollary 6. For all i, j,k ≥ 1 it holds the following:

(1) AR(k-bcpp-scf(j)-hRLWWC(i))⊂
AR(k-bcpp-scf(j)-hRLWWD(i))⊂
AR(k-bcpp-scf(j)-hRLWW(i)),

(2) LSC(k-bcpp-scf(j)-hRLWWC(i))⊂
LSC(k-bcpp-scf(j)-hRLWWD(i))⊂
LSC(k-bcpp-scf(j)-hRLWW(i)).

4 Conclusion

We have introduced the concept of lexically syntactic char-
acterization (LSC) by hRLWW(i)-automata. Our aim was
to characterize exactly the grammatical and ungrammati-
cal syntactic phenomena in terms close to lexicalized syn-
tax of natural languages. LSC characterizes the explicative
power of scf-hRLWW(i)-automata by basic languages.

We consider scf-hRLWW(i)-automata which satisfy the
basic correctness preserving property. Together, the strong
cyclic form and the basic correctness preserving prop-
erty enforce the sensitivity to the number of rewritings
in a cycle, to the size of the window, and the sensitiv-
ity with respect to finite syntactic phenomena. We have
transferred syntactic features characterizing context-free
syntactic phenomena from infinite to parametrized finite
LCS’s. Finally, we have introduced the concept of degree
of strong cyclic form and outlined its meaning for char-
acterization of the complexity of analysis by reduction of
individual sentences.

Thanks to the long-time study of Prague Dependency
Treebank (PDT), and manually made analysis by reduc-
tion on this material, we believe that the above defined

class 12-LSC(2) is strong enough to model lexicalized sur-
face syntax of Czech, that is, to model the LSC based on
PDT.

Our long-term goal is to propose and support a for-
mal (and possibly also software) environment for a further
study and development of Functional Generative Descrip-
tion (FGD) of Czech (see [8, 13]). We believe that the
LSC of full (four level) FGD can be described by tools
very close to 24-LSC(4) (for the tools see [8]).

Finally, note that many practical problems in computa-
tional and corpus linguistic became decidable if we con-
sider only languages parametrized by the size of the win-
dows, or even easier by the finite number of reductions.

Aknowledgement. We thank to anonymous referees for
their valuable comments.

References
[1] Bar-Hillel, Y.: A quasi-arithmetical notation for syntactic

description. Language 29 (1953) 47–58
[2] Hopcroft, J. E., Ullman, J. D.: Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley,
Reading, M.A. (1979)

[3] Hajič, J., Panevová, J., Hajičová, E., Sgall, P., Pajas, P.,
Štěpánek, J., Havelka, J., Mikulová, M., Žabokrtský, Z.,
Ševčíková-Razímová, M.: Prague Dependency Treebank
2.0. Linguistic Data Consortium, Philadelphia (2006)

[4] Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Different Types
of Monotonicity for Restarting Automata. In: FST&TCS
1998. LNCS 1530, Springer, Berlin (1998) 343–354

[5] Kallmeyer, L.: Parsing Beyond Context-Free Grammars.
Cognitive Technologies, Springer (2010)

[6] Kunze, J.: Abhängigkeitsgrammatik. Studia grammatica
XII. Akademie-Verlag, Berlin (1969)

[7] Lopatková, M., Plátek, M., Kuboň, V.: Modeling syntax of
free word-order languages: Dependency analysis by reduc-
tion. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.), TSD
2005, Proceedings. LNCS 3658, Springer, Berlin (2005)
140–147

[8] Lopatková, M., Plátek, M., Sgall, P.: Towards a formal
model for functional generative description: Analysis by
reduction and restarting automata. Prague Bull. Math. Lin-
guistics 87 (2007) 7–26

[9] Niemann, G., Otto, F.: Restarting automata, Church-Rosser
languages, and representations of r.e. languages. In: Devel-
opments In Language Theory: Foundations, Applications,
and Perspectives, World Scientific (2000) 103–114

[10] Plátek, M., Otto, F., Mráz, F.: On h-lexicalized automata
and h-syntactic analysis. In: ITAT 2017, Proc., CEUR
Workshop Proceedings Vol. 1885 (2017) 40–47

[11] Plátek, M., Pardubská, D., Mráz, F.: Robustness versus
Sensibility by Two-Way Restarting Automata. In: ITAT
2018, Proc., CEUR Workshop Proceedings Vol. 2203
(2018) 10–17

[12] Šmilauer, V.: Učebnice větného rozboru. Státní pedagog-
ické nakladatelství (1958)

[13] Sgall, P.: Generativní popis jazyka a česká deklinace.
Academia (1967)

	Introduction
	Definitions
	Further Refinements, and Constraints on hRLWW(i)-Automata

	On Power and Sensitivity of Lexicalized Syntactic Characterizations
	Sensitivity of scf-hRLWW(i)-Automata
	Relation of LSA and LSC to context-free and context-sensitive languages.
	Hierarchies of LSC's and LSA's.
	On Sensitivity of LSC's by analysis by reduction

	Conclusion

