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The article presents the drone positioning technology in a multi-camera system by using the detection algorithm. Paper describes 

positioning system and algorithm for calculating 3d drone coordinates based on its image position, detected on images of stationary 

video cameras. Positioning enables automatically control the drone when precise data from satellite navigation systems are not 

available, for example, in closed hangars. The developed technology is used to create a complex of automatic visual control of 

aircraft. The ways of adaptation of neural network detection algorithm to the problem of drone detection are presented. The main 

attention is paid to the methods of training data preparation. It is shown that high accuracy can be achieved using synthesized images 

without any real data or manual labelling. 
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1. Introduction 

Currently, due to the increase in the aircraft flow in the 

airspace, the complexity of their timely and high-quality visual 

inspection during the maintenance at the airport has increased 

significantly. Significantly increased the total downtime of 

aircraft during unscheduled inspections, caused, for example, 

the impact of atmospheric electricity on the surface of the 

fuselage of the aircraft in flight. External human inspection of 

hard-to-reach areas of the aircraft, such as the upper fuselage or 

tail, aimed to identify the effects of lightning today takes a 

significant time, leading to downtime of aircraft or even flight 

delays. For companies which have a fleet of more than 200 

aircraft, such as Aeroflot, such an event is not uncommon: 

according to the company, it occurs about 300-400 times a year, 

leading to significant time and financial losses. Large 

companies such as Airbus, Lufthansa, EasyJet, American 

Airlines start applying drones to solve the problems of 

accelerating the visual inspection of the aircraft. However, 

currently, the use of drones is carried out in manual mode, 

which does not allow to completely reveal the potential of the 

technology. According to experts, the use of programmable 

drones will significantly reduce the time of inspection of the 

aircraft and, no less significantly, make the technology itself 

completely digital. 

The article proposes an approach to the creation of 

automated drone control technology based on its real time 

positioning using a system of stationary cameras. This 

technology is necessary to ensure the functioning of the drone 

control system in enclosed spaces such as aircraft hangars. The 

development of a special positioning technology is necessary, 

since the signals of global satellite navigation systems (GPS, 

GLONASS, etc.) may be partially or completely inaccessible in 

the hangar where aircraft maintenance is carried out. At the 

same time, the inertial navigation system of the drone can’t 

provide sufficient accuracy throughout its flight. Due to the fact 

that the flight of the drone must be carried out at a short 

distance from the aircraft (no more than 1.5 meters), ensuring 

the accuracy of the trajectory is a critical aspect for the safety 

and applicability of the technology. Visual positioning system is 

the most preferable in the described conditions, as it is able to 

provide sufficient accuracy, it does not require the installation 

of additional equipment on the drone, it is passive, so, it does 

not emit any radio or other signals except Wi-Fi. 

During maintenance, the drone flies over the aircraft on a 

programmed trajectory and makes a high resolution video of the 

surface of the fuselage and wings (Fig. 1). Based on the 

coordinates obtained from the visual positioning system, the 

onboard drone control system monitors compliance with the 

choosen trajectory. By results of the automatic analysis of the 

received videos the decision on existence of damages on a 

covering of aircraft is made. This technology allows complete 

automating the process of visual inspection of aircraft [1]. 

The paper describes the features of creating such a 

technology in terms of positioning drones through the use of 

CNN-based detectors. 

 
Fig. 1. The drone flight over the aircraft during the tests. 

2. Review of detection algorithms 

The proposed technology is based on an algorithm for 

detecting objects in images (namely, video frames). The most 

advanced detection algorithms today are algorithms based on 

deep convolutional neural networks (CNN). Neural network 

architectures for detection are divided into two main types: 

single-stage and two-stage. In two-stage approaches, the task of 

detecting objects is divided into two steps: identifying areas of 

interest, then classifying the class of object in the area, and 

predicting the parameters of the bounding box. 

The two-stage approach was first introduced in 2014 by 

Girshik [2]. His work R-CNN (Regions with CNNs) uses a 

selective search method [3] to detect regions of interest in input 

images and uses a regional classifier based on DCN 

(Deformable Convolutive Networks) to self-classify regions of 

interest. Fast-RCNN [4] improves R-CNN by extracting regions 

of interest from feature maps. Faster R-CNN [5] is a 

modification of the method of Fast R-CNN and R-CNN. The 

method is based on the idea of region proposals. The key 

difference between Faster R-CNN and its predecessors is that 

regions are calculated not from the original image, but from the 

feature map obtained from the convolutional neural network. To 

do this, a module called Region Proposal Network (RPN) was 

added. Obtained with the help values are passed to two parallel 

fully connected branches: bounding box prediction (regression) 

and classification framework. The outputs of these layers are 

based on the so called anchor areas (ancor boxes) – several 

frames for each position of the window, having different sizes 

and aspect ratios. The regression layer for each such rectangle 

produces 4 parameters that adjust the position of the bounding 

rectangle, and the classification layer produces the probability 
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that the rectangle contains an object and the probability that the 

object in the frame corresponds to each of the classes. Cascade 

R-CNN [6] solves the problem of increasing the accuracy of the 

bounding box detection by applying a sequence of detectors 

with varying thresholds. 

In single-stage approaches, there is no stage of finding 

regions of interest, the regression of bounding boxes and the 

classification of candidates in anchor areas is performed 

directly. Because of this, these architectures are more 

computationally efficient than two-stage architectures, while 

maintaining a competitive accuracy-performance ratio. SSD 

(Single Shot Detector) [7], uses a single neural network that 

performs all the necessary calculations and eliminates the need 

for resource-intensive methods of region proposals predicting. 

SSD place the anchors densely over the input image and uses 

the features of different convolutional layers for the regression 

and classification of anchor regions. DSSD [8] adds a 

deconvolution layers inside the SSD to interconnect features 

from the top and bottom layers. YOLO (You Only Look Once) 

[9] uses a small number of anchor regions (dividing the input 

image with a rectangular grid) and is based on the VGG-16 

neural network. YOLOv2 [10] improves the performance due to 

the use of a new method of bounding the regression framework 

and a new neural network Darknet-19. YOLOv3 [11] continues 

to improve Darknet-19, offering a deeper neural network with 

skip connections. Architecture YOLOv2 and YOLOv3 allow to 

change the balance between accuracy and speed of detection by 

varying the number of areas able to solve the problem of 

detection in real time. 

A slightly different approach is used by CenterNet [12], a 

detection algorithm based on methods for key points detection 

using neural networks. It learns to predict the centers of objects 

and form a feature map. The parameters of the bounding 

rectangle are then regressed for the detected centers. Corner Net 

[13] is another detection algorithm based on key points 

prediction. Unlike the CenterNet, CornerNet detects an object 

using a pair of corners of its frame. 

3. Indoor positioning system 

 
Fig. 2. Indoor cameras-based drone positioning system. 

 

As part of the work, an original scheme of the organization 

of the internal positioning system was developed. Video 

cameras (4 or more) are placed in the hangar space in a certain 

way, the orientation parameters of which are pre-determined 

during the calibration of the system. The cameras are connected 

to a server that receives and processes video data. The UAV 

itself is considered as a target object, which is detected on the 

frames of the received video streams by the detection algorithm. 

The algorithm parameters are trained to detect the drone of the 

selected model. In our case, it was a DJI Phantom 3 Advanced 

drone. Based on the position of the drone on the frames and 

orientation of the cameras, its spatial position is calculated. The 

calculated coordinates of the object are transmitted to its on-

board control system via Wi-Fi channel. The scheme of the 

proposed navigation system is shown in Fig. 2. 

To calculate the three-dimensional coordinates of the object 

based on its position in the images, a method is used, which is a 

special case of block triangulation by the method of ligaments 

[14]. Since the camera orientation parameters are known, only 

three unknown 3D coordinate values are calculated. The idea of 

the method is to minimize the deviation of the projection of the 

calculated three-dimensional point on the image from the real 

position of the object (more precisely, the sum of squared errors 

for all cameras). The projection equations are: 
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is rotation matrix for camera i. 

This is a well-known problem, which is solved by the 

method of iterative approximations. Each increment step of the 

three-dimensional coordinates ΔX is determined from the 

solution of the system of equations: 

ATA ΔX + ATB = 0, 

where A is the matrix of partial differential of projection 

equations (1),(2) by drone coordinates over all cameras (size 

3*3*number of cameras in the system), B is the discrepancy 

vector (size 2*number of cameras), containing deviations of 

object projections from real positions on images. 

4. Detection algorithm details 

As the detection algorithm YOLOv2 [9] CNN architecture 

was used. This architecture is slightly concede to YOLOv3 in 

accuracy, but has a higher calculaton speed, and demonstrates 

one of the best ratios of accuracy and performance, which in 

our task is of key importance. Performance determines the 

frequency of control signals delivered to the drone, which 

directly affects the accuracy of control and maximum safe flight 

speed.  

The network receives a three-channel image as input, and 

outputs a tensor of size X×X×Y, where X is the number of cells 

in the input image. The length of the tensor Y depends on the 

number of classes detected and the number of anchor regions in 

the cell. For each anchor area, 5 basic parameters are 

calculated: the coordinates of the upper left corner of the 

rectangle, the width, the height, and the probability that this 

rectangle contains any object. In addition, the probability of the 

object belonging to each selected class is determined. The 

hyperparameters of the algorithm are the number and size of the 

anchor areas and the size of the input image. 

The image size determines the number of cells for which 

the features are calculated, since the cell size is fixed and is 

equal to 32x32 pixels. Therefore, it directly affects the 

performance and accuracy of the network, as the number of 

cells increases the number of network filters. On the other hand, 

if there are more cells, each of them contains fewer objects; the 

features calculated in it correspond more accurately to each 

object and allow to build a more reliable prediction. The plot in 

figure 3 shows the dependence of the FPS, precision, recall and 

accuracy of the object frame (by the metric Intersection over 

Union, IoU) on the image resolution. Despite the slight increase 

in accuracy, 576×576 (18x18 cells) resolution was chosen to 

improve performance. 

To maintain a balance between speed and accuracy, the 

number of anchors is set to 5, as the higher number of anchor 



areas decreases performance. K-means clustering of bounding 

rectangles on our training data set was used to determine anchor 

sizes. 

 
Fig. 3. Dependency of FPS, precision, recall and IoU on 

image resolution. 

5. Automated data preparation 

Since the work uses AI detection algorithms, training data is 

required to learn them. In our case, data are images with 

annotation: the type of object and its coordinates (bounding 

box) in the image. The CNN detectors used are very flexible but 

have a very large number of parameters. In this regard, a lot of 

training data is required. In order to avoid time-consuming 

manual data labelling, automatic synthesis of images was used 

for training and testing the algorithm. 

  
Fig. 4. Rendered 3D drone model and its mask. 

 

The data were synthesized based on the rendering of the 

existing three-dimensional model of the drone (Fig. 4). Special 

3D environments were not used during data endering, as their 

preparation requires additional manual labor of designers. 

Instead, the process was structured as follows. The model of the 

drone in different angles was rendered in a 3D modeling system 

on a uniform-colored background. The object in the image was 

automatically cut out, and its mask was built. Then the image 

and mask were subjected to random transformations: rotation, 

scaling, displacement, reflection, perspective transformation, 

blurring, salt/pepper noise, shift of color channel values (Fig. 

5). After that, the image of the object on his mask was ovelayed 

on arbitrary backgrounds. Both random images and images 

from the test hangar where the subsequent testing was carried 

out were used as backgrounds. In order to make such insertion 

look natural and the network did not remember overlay artifacts 

as informative features of the object, local smoothing of objects 

with a Gaussian filter with randomized intensity was performed. 

In addition, objects from the Coil-100 collection were added to 

the images to increase the discriminative ability of the network 

[15]. 

To prepare the test data and expand the training base 

through real images, the real drone flight and video capture in 

the test hangar were carried out (Fig. 6). To get rid of  manual 

annotation video files, the following automatic labellng 

algorithm was used. Optical flow maps were calculated for each 

video frame. The area with the maximum magnitude of the 

optical flow was selected on the maps. Since normally there 

were no other moving objects in the experimental scene, this 

area was thought to correspond to a drone. Sometimes due to 

the presence of foreign moving objects and shadows, as well as 

inaccuracy of segmentation, such labelling contained several 

errors. An experimental study was devoted to the estimate of 

the influence of different types of training data on the detection 

results. 

 

 

 
Fig. 5. Examples of training samples. Image having real 

hangar image as a background and random image. 



6. Experiments 

The accuracy of the detection algorithms was tested in a 

series of computational experiments on various training 

collections. We had three main data collections: synthetic, 

where images of drones were obtained by rendering 3D models, 

and the backgrounds are taken arbitrarily; semi-synthetic, where 

backgrounds for rendering was real images of the hangar in 

which the experiment was carried out; and autolabelled real, 

obtained by automated labelling drone videos (using optical 

flow). Incorrectly labelled data was manually deleted. Testing 

data was the part of the real data collection that was not used for 

training. The obtained precision, recall and IoU for different 

sets of training data are shown in table 1. 

According to the results of the experiments, the following 

conclusions can be drawn. First, it is possible to train the 

algorithm with high accuracy on fully synthetic data, which was 

the purpose of the work. Secondly, the smoothing of objects 

when overlaying them on the background image plays a crucial 

role. Without smoothing, artifacts at the boundaries of objects 

become too important feature for the neural network, and it 

overfits to detect only artificial objects. Third, the use of a large 

number of random backgrounds was better than the use of a 

small number of real backgrounds from the test hangar. Despite 

the fact that the background images on the test data were similar 

to the training ones (but not the same), the network overfits, that 

means it has a low generalizing ability and does not cope with 

new scenes. Fourth, the inclusions of random objects 

(distractor) in the training images allowed significantly improve 

the accuracy of the work. Although these objects are not 

labelled in the test data, the network has learned to better 

distinguish drones from any other objects (see table 1). 

 

 

 
Fig. 6. Real video frame from experimental hangar and 

corresponding optical flow map.  

 

In addition, during the experiments it was found that when 

training the network on the data obtained by the above-

described autolabelling method, the accuracy was worse than on 

synthetic data. This is due to the fact that optical flow map is 

blurred, and the resulting bounding box is greater than the real 

object bounding box (Fig. 6). Also, the available real data are 

not sufficiently diverse. 

 

Table 1. Detector testing results 

Train Data Precision Recall IoU 

Synthetic 100% 98.69% 98.65% 

Synthetic without 

disctractors 
27.53% 97.71% 97.63% 

Synthetic without 

smoothing 
18.25% 86.60% 86.41% 

Semi-Synthetic 41.13% 92.48% 91.58% 

Semi-Synthetic without 

smoothing 
45.56% 93.32% 98.64% 

Autolabelled real data 33.92% 37.91% 37.89% 

7. Conclusion 

The paper describes the indoor drone positioning 

technology based on stationary visual sensors and the algorithm 

of drone detection. Given camera orientation and detection 

results the 3D position is reconstructed using a special 

algorithm of iterative minimization of the total reprojection 

error. The ways of adaptation of the CNN-based detector to the 

subject area were investigated. Both the automated process of 

creating training data and hyperparameter tuning are described. 

The influence of the data generation methods on the result is 

studied, in particular the inclusion of distracting objects in the 

data, artifacts of object overlay, the use of various background 

images. Conducted experiments showed that it is possible to 

train high accuracy detector exclusively on automatically 

synthesized images obtained using the renderings of a three-

dimensional model of the drone without any real samples. 
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