=Paper= {{Paper |id=Vol-2488/paper11 |storemode=property |title=Mathematical Models and Analysis of Deformation Processes in Biomaterials with Fractal Structure |pdfUrl=https://ceur-ws.org/Vol-2488/paper11.pdf |volume=Vol-2488 |authors=Yaroslav Sokolovskyy,Maryana Levkovych,Olha Mokrytska,Svitlana Yatsyshyn,Yaroslav Kaspryshyn,Christine Strauss |dblpUrl=https://dblp.org/rec/conf/iddm/SokolovskyyLMYK19 }} ==Mathematical Models and Analysis of Deformation Processes in Biomaterials with Fractal Structure== https://ceur-ws.org/Vol-2488/paper11.pdf
      Mathematical Models and Analysis of Deformation
       Processes in Biomaterials with Fractal Structure

     Yaroslav Sokolovskyy1[0000-0003-4866-2575],     Maryana Levkovych1[0000-0002-0119-3954]

        Olha Mokrytska1[0000-0002-2887-9585]       Svitlana Yatsyshyn1[0000-0001-5200-4837]

        Yaroslav Kaspryshyn1[0000-0003-1118-9059] and Christine Strauss2[0000-0003-0276-3610]
 1
     Department of Information Technologies, Ukrainian National Forestry University, UNFU
                                     Lviv, UKRAINE
      sokolowskyyyar@yahoo.com,                maryana.levkovych@gmail.com,
             mokrytska@nltu.edu.ua, svitlana0981@gmail.com
                              kaspryshyn.ya@gmail.com
                   2
                       Department of Electronic Business, University of Vienna
                                        Vienna, AUSTRIA
                           christine.strauss@univie.ac.at




        Abstract. Mathematical models of heat and mass transfer and deformation pro-
        cesses of biomaterials are investigated, taking into account such properties as
        memory-effect (eriditarity), self-organization, deterministic chaos, heterogenei-
        ty of structure, variability of rheological properties. The obtained results of
        numerical modelling of non-isothermal moisture transfer and deformation of
        biomaterials taking into account fractal structure make it possible to estimate –
        based on the type of material and its thermo-mechanical characteristics – the
        residual deformation of the material. A mathematical rheological model of two-
        dimensional visco-elastic deformation of biomaterials with regard to memory-
        effect and self-organization is constructed, which is described using equilibrium
        equations with fractional order. The relation between the two-dimensional
        stress-deformation state of biomaterials for the rheological models of Maxwell,
        Kelvin and Voigt, which are presented in the integral form, was obtained. The
        aspects of the algorithm of numerical implementation of two-dimensional
        mathematical model of visco-elastic deformation in fractured media are pre-
        sented. The method of splitting fractional-differential parameters of models was
        adapted, which was used in the problems of identification of non-integer pa-
        rameters of models. The results of the identification and numerical implementa-
        tion of the mathematical model of heat and mass transfer processes of biophysi-
        cal materials are considered, taking into account the fractal structure.

        Keywords: eriditarity, biophysical process, non-integer integro-differentiation
        apparatus.


Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution
4.0 International (CC BY 4.0)
2019 IDDM Workshops.
2


1            Introduction

The biophysical process is often characterized by the simultaneous influence on the
material of several factors - load, moisture and temperature. Changing at least one of
them in the biomaterial, to which belong transplant, implants, joints, medical silicon,
leads to formation of deformation and its transition from one type to the other, result-
ing in the total or partial restoration of the original physical state. This ability of the
material characterizes the presence of the memory-effect, which is based on residual
deformations. In addition to residual memory, biomaterials are characterized by sto-
chastic heterogeneity of the structure and significant variability of rheological proper-
ties. To investigate the above-mentioned properties in biophysical materials, as well
as deterministic chaos, the complex nature of spatial correlations and self-
organization is possible by formal means of fractional integro-differential operators
[1, 10]. This approach provides the basis for the development of mathematical models
of non-equilibrium biophysical processes with a fractal structure. At present, a very
small number of works [7, 8] is devoted to the development of algorithms and soft-
ware for studying the processes of deformation and heat-moisture transfer, taking into
account the memory-effect-properties and self-organization of materials, which al-
lows us to estimate the residual and elastic stress values.


2            Problem formulation

The mathematical rheological model of two-dimensional visco-elastic deformation of
biomaterials, taking into account eriditarity (memory-effect) and self-organization, is
described using equilibrium equations with a fractional order  0    1 in spa-
tial coordinates x1 and x 2 :

                 ~                    22 ~              2    12 ~ 2 
    C11  R11 11  R11   C12  R12          R   
                                                    12   2C    
                                                              33  R33        R33   0,            (1)
             x1                       x1                       x 2        

                  ~                     22 ~               1    12 ~ 1 
    C 21  R21 11  R21   C 22  R22          R    
                                                       22   2C    
                                                                 33  R33        R33   0.         (2)
              x 2                       x 2                       x1         
            ~
where Rij , Rij are the corresponding values of the integrals:
                                                                T 1,T 2                k  1,2
     t                                 t

      Rij t  z, T ,U dz  Rij ,  Rij t  z, T ,U 
                                                                                  ~
                                                                             dz  Rij ,
     0                                 0                        x k
         t
                               T 3            t
                                                                         T 3
      0 R   t  z , T , U      
                                      dz 
                                           ~2
                                           R   ,  R   t  z , T , U      
                                                                                     ~1
                                                                                dz  R33 ,
                               x 2                                      x1
          ij                                33      ij
                                                 0

Rij are relaxation kernels of fractional-differential models, which are dependent on
time t , temperature T and moisture U ; 
                                                    T
                                                         11,  22 , 12  is a deformation vec-
                                                                                                 3


tor, components of which are dependent on time t and spatial variables x1 and x2 ,
 t , x1 , x2  D, D  0,T~ 0, l1  0, l2  ,  T   T 1 ,  T 2 ,  T 3 T is deformation
vector, components of which are dependent on temperature variations T and mois-
ture content U :
                 T 1  11T  11U ,  T 2   22T   22U ,  T 3  0,
11,  22 , 11,  22 are coefficients of thermal expansion and moisture-condition
shrinkage; Cij are components of the elastic tensor of an orthotropic body:
                                  E            E
                                                                         , C33   ,
               E11                                              E 22
   C11                 , C12  2 11 , C 21  1 22 , C 22 
           1  1 2         1   1 2  1  1 2    1  1 2 
where  is shear modulus in plane, E11, E22 , Е12 are Young’s moduli,  1 , 2 are
Poison’s ratios.
  Let us set the following boundary conditions:

                                ij x 0  0,           ij x l  0,                          (3)
                                    j                         j    j



and initial conditions, respectively:

                                              ij t 0  0.                                    (4)

   The relationship between the components of stress  T   11,  22 ,  12  and
strain  T   11,  22 ,  12  for two-dimensional fractional-differential rheological
models, respectively, can be written as follows:
   Voigt’s model

                      11                              
          11                 Dt  11   T 1   2 11 Dt  22   T 2  
                  1  1 2                       1  1 2                                (5)
          2     
                       D      D    ,
                           
                           t   11       T1
                                                 
                                                 t    22          T2


                     1 2                                22
         22                   Dt  11   T 1                 Dt  22   T 2  
                  1   1 2                        1   1 2                             (6)
                      
         2 D  11   T 1   D  22   T 2  ,
                  
                          t
                           
                                                t
                                                 
                                                                       
                       12  Dt 12   T 3     Dt 12   T 3 ,                    (7)

 is elastic modulus of an elastic element of a Voigt’s body, 0      1 ;
   Kelvin’s model
4


               1 
     11                Dt  11 
                                        11
                                                  11   T 1    2 11  22   T 2  
             1   2             1  1 2                   1  1 2                   (8)
     2   
     1 2
     1   2 
                       
                 Dt  11   T 1   Dt  22   T 2  ,      
               1                                          22
     22                Dt  22  1 22  11   T 1                   
             1   2            1  1 2             1  1 2  22 T 2                  (9)
     2   
     1 2              
                D       Dt  22   T 2  ,
     1   2  t 11 T 1
                                                                  
                  1                                       
       12                 Dt  12    12   T 3   1 2       D     ,             (10)
                1   2                                1   2  t 12 T 3
where 1 is elastic modulus of an elastic element of a Voigt’s body,  2 is elastic
modulus of an elastic element,  ,  are fractional derivatives and 0   ,   1 ;
  Maxwell’s model

        11    Dt  11 
                                        11
                                                  11   T 1    2 11  22   T 2  
                                    1   1 2                  1   1 2                 (11)
        2 2    
                       D      D    ,
                           
                           t   11      T1
                                                
                                                t   22       T2


                                       1 2
      22    Dt  22                          11   T 1    22  22   T 2  
                                    1   1 2                   1   1 2                (12)
                   
       2 2  Dt  11   T 1   Dt  22   T 2  ,           
                12    Dt 12   12   T 3   2  Dt 12   T 3 ,               (13)

where  2 is elastic modulus of an elastic element for Maxwell’s model,,
 0     1.
   If we put   0,   1 in relations (5) - (7), we get the classical two-dimensional
Voigt’s model in the case of orthotropy. Relations (8) - (13) will describe the classi-
cal Maxwell’s and Kelvin’s models at fractal values   1,   1 .
   For the integral representation of relations (5) - (13), we consider the properties of
fractional derivatives [5], the definition of fractional derivative  , 0    1 :
                                                         t
                           Dt f t              Dt t    f  d .
                                             1                

                                          1    0
                                                                                               (14)


as well as the Laplace transform method [9].
                                                                                                                           5


   Thus, the relations describing the relationship between stress and strain (5) - (13)
can be rewritten after the corresponding transformations in the integral form.
   Two-dimensional fractional-differential Voigt’s model:
                                   t
                      Dt  t    [ p1 11     T 1     p2  22     T 2   ]d 
               Cii                

             1    0
  ii 

       2 
                       t
                Dt   t    [ 11     T 1      22     T 2   ]d ,
                              
 
       1    0
                                                                                                                         (15)

                                                                  
                      t                                                      t
                   Dt   t    12     T 3    d            Dt   t    12     T 3    d .
                                                                                      
12 
          1    0                                            1    0
                                                                                                                         (16)

     Two-dimensional fractional-differential Kelvin’s and Maxwell’s models:
                               t
  ii  Сi G  t   A G  t   [ p1  11     T 1     2 BDt  11     T 1    ]d 
                               0
        t
     A G  t   [ p2   22     T 2     2 BDt   22      T 2    ]d  ,
        0                                                                                                            (17)
                           t
12  C3G  t   A G  t    2C33 12     T 3     BDt 12     T 3    d ,
                           0                                                                                         (18)
                t  1 E ,   At   , Kelvin        1 2 
                                                                     , Kelvin
      G t                 t                  B    1   2 
                  1
               t E ,     , Maxwell                   , Maxwell
where                                         ,      2                     ,
    1   2 
                , Kelvin
   1 
A
       1
          , Maxwell
  
                                            for       Maxwell’s            and       Kelvin’s          models           –
 i  1  p1  C11 , p2  C12                                    i  1  p1  1, p2   2
                             ;                                                           .
i  2  p1  C21 , p2  C22           for Voigt’s model –      i  2  p1   1 , p2  1        .


3           A numerical method for the realization of two-dimensional
            fractional-differential rheological models

To implement the numerical method, we introduce the space-time grid in the
region D :
6


 t ,h ,h  {t k , x1( n ) , x2( m)  : x1( n )  n  1h1 , x2( m)  m  1h2 , t k  kt , n  1,..., N ;
      1    2
                                                                               ~                                (19)
          l1                                     l2                           T
h1           ; m  1,..., M ; h2                    ; k  0,1,..., K ;   }.
        N 1                                 M 1                             K
   Given the Riemann-Liouville formula [10], the difference approximation of a frac-
tional derivative  0    1 by coordinates x1 , x2 can be written as follows
[4, 5]:

                   u                 u n1  u n , h  x
                                                          i ( n1)  xi ( n ) , i  1,2,                     (20)
                                       2   hi
                                                   
                                                       i
                  xi x
                            i(n)




where  is a Gamma function.
   Given (20), the finite-difference approximation of the system of differential equa-
tions (1) - (2) will take the form:

                    C11
                 2   h1
                           
                                                                       ~
                             R11  11k ( n 1,m )   11k ( n ,m )  C11R11 

                 
                        C12
                     2   h1
                               
                                 R12  22
                                       k
                                                        k                ~
                                                                            
                                         ( n 1,m )   22( n ,m )  C12 R12 
                                                                                                              (21)


                 
                        2C33
                     2   h2
                               
                                                                            ~
                                 R332  12k ( n ,m1)   12k ( n ,m )  2C33R332  0,


                             R21  11k ( n ,m1)   11k ( n ,m )   C21R21 
                    C21                                                    ~
                 2   h2
                           



                                 R22  22( n ,m 1)   22( n ,m )   C 22 R22 
                        C22                                                   ~
                                       k                 k
                                                                                                              (22)
                     2   h2
                               



                 
                        2C33
                     2   h1
                               
                                  1
                                 R33  12k ( n1,m )   12k ( n,m )   2C33R33
                                                                               ~1
                                                                                    0.

   The boundary and initial conditions (3) - (4) in the finite-difference form are writ-
ten, respectively:

          11, 22,12k   0, 11, 22,12 N ,m   0, 11, 22,12n,1  0, 11, 22,12n,M   0,
                                               k                        k                k
                                                                                                              (23)
                     1, m




                                                   11, 22,120n,m   0.                                     (24)
                                                                                             7


4       Splitting two-dimensional fractional-differential kernels

Let a force act on a wooden specimen along the axis OX. Then from the components
of the stress tensor  11  0 , and  22  0 .
   Since it is known that the average stress is specified by the formula:

                                          ~ 
                                                  1
                                                     11   22 ,                        (25)
                                                  3

then in this case ~  1          11 .
                             3
    The stress tensor deviator then takes the form:

                                                               2       0
                      Sij t    ij  ~ ij                 3 11          ,            (26)
                                                                 0    1  11
                                                                        3

              1, i  j;
where  ij             is the Kronecker symbol.
              0, i  j.
    The strain tensor deviator will take the form:

                                                  2       11   22        0
                 eij t    ij  e~ ij            3                                ,   (27)
                                                               0          1    
                                                                           3 22 11

                  11   22 .
      ~     1    1
where e
             3    3
    The displacement equation [6] takes the form:

                                  S ij t                 t
                     eij t             зс t   S ij  d ,
                                    1
                                2 2 0
                                                                                          (28)


where  зс t    is shear creep kernel,  is shear modulus.
    The equation of volumetric deformation (strain) is written accordingly [11]:

                                   ~t  1 t
                         t                       t   ~ d ,
                                                               об                          (25)
                                     B            B   0
8


where  об t    is volumetric creep kernel, B is volumetric modulus of elasticity
associated with the longitudinal modulus of elasticity 11 and elastic Poisson's ratio
 0 by the formula B         11     .
                         31  2 0 
   Based on the creep data of stretched or compressed specimens, using the measured
values of longitudinal  11 t  and transverse  22 t  deformations, we can construct
functions of longitudinal 11 t  and transverse  22 t  creep.
   We write the equations of the processes of longitudinal and transverse deformation
of a wooden specimen that is stretched by stress  11 t  [11]:

                                  1                                     
                                                 t
                     11t          
                                      11 t    11t    11 d ,                      (30)
                                 11            0                       

                                   0            t
                                                                           
                    22 t          
                                       11 t    12 t    11 d ,                    (31)
                                   11              0                             
where  0   0 is the value of the elastic Poisson ratio.
    For the component e11 from (27) we have:

                                                         t
                                                                                    
         e11 t        11   22   2 1  11 t    11 t    11  d  
                      2
                      3                  3 11           0                         
              2 0                                        
                                t
                    
                     11 t     12 t    11  d                                     (32)
              3 11            0                          
              21   0                    t
                           11 t            11 t      0  12 t    11  d .
                                       2
                                      311 0
         
                311

    From (26) it is known that S11  2
                                                 3
                                                      11 . Then  11  3 2 S11 and we get:

                      1  0              11t      0 12 t              
                                         t
          e11t             S11t                                   S11 d  
                       11              0
                                                     1  0                                     (33)
              1  0                                     
                                   t
                     S11t     зс t   S11 d ,
               11              0                        

where          t     11t      012 t    .
                                           1  0
           зс


    The creep equation in the case of stretching will take the form:
                                                                                                    9


         1                                         2 0                                     
                        t                                             t
           
             11 t        t        d       
                                                           11 t    12 t    11 d . (34)
        11                                        11 
                            11           11
                        0                                             0                        
                ~ , then
  Since  11  3

           1  2 0 ~           1                 2              
                             t
                 3 t         11 t     0  12 t   3~ t d 
             11                 
                             0  11
                                                   11             
        31  2 0   ~           t     2 0  12 t    ~        
                                t
                                                                                                 (35)
                      t    11                              t d  
            11                           1  2 0
                               0                                          
        31  2 0   ~                                 
                                t
                      t     об t   ~ t d ,
            11                                         
                               0                        

where  об 
                    11 t     2 0 12 t   
                                                     .
                               1  2 0
   For fractional-differential models of the shear and volumetric creep kernel, it can
be written for each model as follows:
   for Voigt’s model


     зс F  t    
                          t  
                                  1
                                                    
                                       ( E   ,  
                                                           11                       
                                                                       t      
                         2 1  0 
                             
                                                     2 1  1 2 
                                                         
                                                                                                (36)
                        11 2                      
     0 E   ,                  t     ),
                     2 1  1 2 
                         
                                                     

    об F  t    
                            t    1 ( E             11                       
                                                                        t      
                                              ,  
                          2 1  2 0 
                               
                                                      2 1  1 2 
                                                          
                                                                                                (37)
                         11 2                      
    2 0 E   ,                  t     ),
                      2 1  1 2 
                          
                                                      
  for Kelvin’s model


    зс K  t    
                         1   2  t    1 ( E   111   2  t     
                                                      ,                           
                    21 2  1   0                    21 2 1  1 2 
                                                                   
                                                                                     
                                                                                                 (38)
                                   
     0 E ,   2 11  1 2 t    ),
                 21 2 1  1 2        
10



     об K  t    
                           1   2  t    1 ( E   11 1   2  t     
                                                          ,                          
                       21 2  1  2 0                    21 2 1   1 2 
                                                                       
                                                                                        
                                                                                            (39)
                     2 11 1   2             
     2 0 E  ,                       t    ),
                    21 2 1   1 2 
                              
                                                     

5         Numerical implementation of a mathematical model

Considering the previous studies [2, 3] regarding the identification of fractional-
differential parameters of models, we present the identification results for the rheolog-
ical Maxwell model (see Fig. 1).




Fig. 1. Identification of fractional-differential parameters of the Maxwell model.

   In Fig. 2, the deformation change for a sample of biomaterial (modulus of elasticity
 E  16,1GPa ) [12] was investigated using a Kelvin rheological model taking into
account the fractal structure of the medium without taking it into account. Such stud-
ies have shown that by decreasing the fractional-differential parameter  , the defor-
mation functions increase more slowly, and at a value   0,1 , the deformation curve
acquires the form in which the deformation of the material is smallest. Thus, it is pos-
sible to trace the relationship between the fractal parameters of the model and the
process of deformation change.
                                                                                    11




Fig. 2. Change of the deformations of the fractional-differential Kelvin’s model.

   Our results show that the difference between the stress curves with the fractal
structure and without taking into account for more solid types of biomaterials does not
exceed 16.7%, whereas the difference between the stress curves for materials with a
lower density lies between 19.6 and 24.0%.


6      Conclusions

Two-dimensional mathematical models of deformation processes of biomaterials have
been constructed, which make it possible to take into account the fractal struc-ture of
a material depending on the initial values of temperature and moisture content,
thermo-mechanical characteristics of anisotropy, different types of material. An algo-
rithm for numerical implementation of two-dimensional mathematical models of vis-
co-elastic deformation of biomaterials has been developed, which allows calculating
the components of the stress-strain state of a material taking into account the effects
of memory and self-organization.
    Adaptation has been carried out of the method of splitting fractional-differential
creep kernels, which makes it possible to determine the functions of volumetric and
shear creep according to the experimental data of one-dimensional models of visco-
elastic deformation, to identify fractional-differential parameters of models taking
12


into account the fractal structure of the medium and to estimate the values of elastic
and residual stresses of biomaterials. Presented are the results of the numerical im-
plementation of the mathematical model, taking into account the heterogeneity of the
structure of biomaterials, self-organization and memory-effect.


References

 1. Uchajkin, V.: Method of fractional derivatives. Ulyanovsk: Publishing house
    “Artishok”, 512 p. (2008).
 2. Sokolowskyi, Y., Shymanskyi, V., Levkovych, M., Yarkun, V.: Mathematical and
    software providing of research of deformation and relaxation processes in envi-
    ronments with fractal structure. Proceedings of the 12th International Scientific
    and Technical Conference on Computer Sciences and Information Technologies,
    CSIT 2017, Lviv, Vol. 1, pp. 24-27
 3. Sokolovskyy, Y., Levkovych, M., Mokrytska O., Atamanvuk, V.: Mathematical
    Modeling of Two-Dimensional Deformation-Relaxation Processes in Environ-
    ments with Fractal Structure. 2nd IEEE International Conference on Data Stream
    Mining and Processing, DSMP 2018, Lviv, p. 375-380.
 4. Beibalaev V.D.: The numerical method of solving regional problems for a two-
    dimensional weekend. The solution of thermal conductivity with higher order.
    Vestn. Sam. state tech. un-that. Ser. Phys.-mat. Sciences, 2010, №5 (21), pp, 244-
    251.
 5. Podlubny, I.: Fractional Differential Eguations. Vol. 198 of Mathematics in Sci-
    ence and Engineering, Academic Press, San Diego, Calif, USA. (1999).
 6. Pobedrya B.E.: Models of the linear theory of viscoelasticity. Mechanics of
    Solids, 2005, Vol. 6, pp. 121-134.
 7. Sokolovskyy, Y., Shymanskyi, V., Levkovych, M.: Mathematical Modeling of
    Non-Isothermal Moisture Transfer and Visco-Elastic Deformation in the Materi-
    als with Fractal Structure. 11th International Scientific and Technical Conference
    on Computer Sciences and Information Technologies, CSIT 2016, Lviv, pp. 91-95.
 8. Sokolovskyy, Y., Levkovych, M., Mokrytska O., Kaplunskyy, Y.: Mathematical
    models of biophysical processes taking into account memory effects and self-
    similarity. 1st International Workshop on Informatics and Data-Driven Medicine,
    IDDM 2018, Lviv, p. 215-228.
 9. Mainardi F.: The Fundamental Solutions for the Fractional Diffusion-Wave Equa-
    tion Appl. Math. Lett, Vol. 9, No. 6, 1996, pp. 23-28.
10. Samko S.G., Kilbas A.A., Marichev O.I.: Integrals and Virology and Other Orders
    and Actions. Minsk. Science and technology, p. 688 (1987).
11. Koltunov M.A., Kravchuk A.S., Mayboroda V.P.: Applied Mechanics of a De-
    formable solid, M., Higher School, 349 p (1983).
12. Liu Tong: Creep of wood under a large span of loads in constant and varying en-
    vironments. Experimental observations and analysis. Holz als Roh- und Werkstoff
    51, pp. 400-405 (1993).