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Abstract. A mathematical model of the process of an acoustic wave 

propagation in a relax environment has been investigated. This mathe-

matical model is widely used to describe and determine the basic pa-

rameters of the wave process in the problems of ultrasound diagnostics. 

The model is formulated in the form of the Cauchy problem for hyper-

bolic equation of third order with the initial data, which are analytical 

functions. The class of entire functions, which is the class of existence 

and uniqueness of the Cauchy problem solution for the par-

tial differential equation, which describes this wave, is established. In 

the selected class of functions, the Cauchy problem solution is con-

structed using the differential-symbol method. Examples of solv-

ing problems with specific initial data are given. The obtained results 

and the indicated methodology allow us to determine the basic parame-

ters of the process of acoustic wave propagation in the problems of ul-

trasound diagnostics. 

 

Keywords: Mathematical model, wave process, ultrasound diagnostics, 

initial problem, differential-symbol method  

1 Introduction 

Simulation of biomechanical processes in medicine is an extremely important area of 

scientific researches [1–3]. Such modeling is often based on existing models. For 

example, models of continuous-environment mechanics (in vibration problems [5–7]) 

and models of gas-hydrodynamics problems [8, 9] are used particularly in models of 

biological and medical processes [4]. A characteristic feature of modern models is the 

using of nonlinear partial differential equations, in addition to the ordinary differential 
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equations. The study of such models is quite complicated (see, in particular, [10–12]). 

Numerical, qualitative, and asymptotic methods are used to research such models 

[13–15].  

In recent years, in modeling complicated biomedical processes of diverse nature, 

the interest has been increasing not only in traditional partial differential equations of 

second order, but also in equations of higher order. The wave processes with disper-

sion and absorption in water dynamics problems [16, 17], viscosity theory [18], and 

geophysics [19] are described by partial differential equations of third order with 

respect to time. In particular, such equations include the equations of fourth order in 

spatial variables which describe the processes of vibration of mechanical systems [20, 

21].  

The hyperbolic equations of third order in time, which are intensely studied in ul-

trasound diagnostics, include the equation of the form 

 
3 2

2 2 3

1 2 33 2
( , ), ( , , ) ,f e

u u u
c c u f t x x x x x

tt t

   

        
  

 (1) 

in which ( , )u t x  is dynamic pressure,  is relaxation time, constants 
ec  and 

fc  are 

limiting phase speeds of sound, 
2 2 2

2 2 2

1 2 3x x x

  
   

  
 is three-dimensional Laplace 

operator. 

In research [22], the solution of the Cauchy problem for equation (1) is given by 

the fundamental solution of equation (1) using modified Bessel functions. 

The work is aimed to: 

 study of the mathematical model of the acoustic wave propagation  process 

in a relax environment with given initial data, which are entire analytical 

functions; 

 establishing a class of unique solvability of the corresponding Cauchy prob-

lem; 

 presentation of the analytical method of solving the problem;  

 study of the process of acoustic wave propagation for the specific initial data 

of the problem, development of a method of finding the determining parame-

ters of the wave process. 

2 Posing of the problem and main results 

Let us consider the Cauchy problem 

 
2 2

3

2 2
( , ) ( , ), ( , ) ,u t x f t x t x

t t t
 

    
        

    
 (2) 

 
2

3

0 1 22
(0, ) ( ), (0, ) ( ), (0, ) ( ), ,

u u
u x x x x x x x

t t
  

 
   

 
 (3) 

where   is the constant which belongs to the interval (0,1) , (0, )   . 



3 

Note that equation (2) is obtained from (1) by introducing dimensionless variables 

/ ( )i i fx x c   і /f ec c  . 

In work [23], the solution of problem (2), (3) is based on the fundamental solution 

of equation (2), but it has a very complicated structure and needs simplification. 

In this research, we recommend another approach to solving problem (2), (3). We 

use the differential-symbol method, which was effectively applied to solving the Cau-

chy problem [24] and two-point in time problems [25–27]. 

Let us write ordinary differential equation   

 
3 2

3 2
( , , ) 0

d d d
V t

dtdt dt
   

 
    

 
, (4) 

in which   is the Laplace operator symbol, that is 2 2 2 2

1 2 3| |        , 

3

1 2 3( , , )     . 

Let 
1 1( , )    , 

2 2 ( , )    , 
3 3( , )     is the roots of the algebraic equa-

tion  

 3 2 0       . (5) 

They belong to the set  
3

3 3 3

1 2(1 3 ) 1 (1 3)(1 3 ) (1 3)
,

3 3 33 2 3 4 6 2

A i i A

A A

     
      
  

, 

where 
3 23 4(1 3 )A B B     , 2 9 27B      , 2 1i   . 

Remark 1. If 0  , then 2B   , 3 2A   , roots 
1 , 

2  and 
3  of equation (5) 

are independent of the parameter  , in particular, 
1( ,0) 1    , 

2( ,0) 0,    

3( ,0) 0   . 

Remark 2. If 
1

3
   , 

1

9
  , then 1 2 3

1

3
      . For the other pairs ( , )   

at least the two roots are different. 

In the case 1 2 3 1      , the elements of normal fundamental system of 

solutions of equation (4) have the form 

 

31 2

31 2

31 2

3 2 3 2 3 1 3 1 2 1 2 1
0

3 2 2 1 3 1

2 2 2 2 2 2

3 2 3 1 2 1
1

3 2 2 1 3 1

3 2 3 1 2 1
2

3

( ) ( ) ( )
( , , ) ,

( )( )( )

( ) ( ) ( )
( , , ) ,

( )( )( )

( ) ( ) ( )
( , , )

(

tt t

tt t

tt t

e e e
V t

e e e
V t

e e e
V t

 

 

 

           
 

     

     
 

     

     
 



    


  

    


  

    


2 2 1 3 1

.
)( )( )      

 (6) 

They are entire functions of variable 2 2 2

1 2 3       and vector-parameter 

1 2 3( , , )     according to the Poincare’s theorem [28]. 

Provided 1 2 3     functions (6) have the form  
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1 2 2

1 2 2

1 2 2

2

2 1 2 1 2 1 2 1

0 2

2 1

2 2

2 2 2 1

1 2

2 1

2 1

2 2

2 1

(2 ) ( )
,

( )

2 2 ( )
,

( )

( )
.

( )

t t t

t t t

t t t

e e t e
V

e e t e
V

e e t e
V

  

  

  

       

 

   

 

 

 

   




   




  




 

If 1 2 3    , then the normal fundamental system of solutions of equation (4) 

is the following: 

 

1

1

1

2 2

0 1 1

1 1

2

2

1
1 ,

2

1 ,

1
.

2

t

t

t

V t t e

V t t e

V t e







 



 
   
 

 



 

Remark 3. According to Remark 1, if 0   the condition 1 2 3     is ful-

filled and functions (6) have the following form: 

0 1 2( , ,0) 1, ( , ,0) , ( , ,0) 1tV t V t t V t e t        . 

Remark 4. If 
1

3
    and 

1

9
  , then according to Remark 2 all roots of equa-

tion (5) are identical and equal to 
1

3
 . Functions (6) have such form 

 

1

2 3
0

1

3
1

1

2 3
2

1 1
1 ,

3 18

1
1 ,

3

1
.

2

t

t

t

V t t e

V t t e

V t e







 
   
 

 
  

 



 (7) 

Let the initial functions 
0 1 2( ), ( ), ( )x x x    and right-hand side ( , )f t x  of equa-

tion (2) are arbitrary entire functions. Then there is only one solution of problem (2), 

(3) in the class of entire functions. This solution can be presented in the form 

 

 
2

0

2

0

3 2

0,

( , ) ( , , )

( , , )

, ,

x

k k

k O

t k

k
xk

O

u t x V t e

e V t

f e









 

  


  

     



 



 

 
  

 

 
     

   
      

  



  (8) 
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where 
1 1 2 2 3 3x x x x       , (0,0,0)O  , the differential expressions 0 ,



 
 
 

 

1


 
 
 

, 2


 
 
 

 and ,f
 

  
 
  

 are obtained from the functions 
0 ( )x , 

1( )x , 

2 ( )x  and ( , )f t x  with the change x  to 





 and t  to 






. 

The differential expressions 0 1 2, ,  
  

       
     
       

 and ,f
 

  
 
  

 for en-

tire data of problem can be defined as corresponding Maclaurin series. The actions of 

these expressions on functions in curly brackets of formula (8) are correct because the 

functions in brackets are entire functions of first order with respect to the vector   

and the variable   in the last brackets.  

Function (8) satisfies equation (2). It follows from the commutativity of differen-

tiation operators 
t




, 

x




, 






 and 






, and from the fact that functions (6) satisfy 

equation (4). Also, the function ( , )u t x  of the form (8) satisfies initial conditions (3), 

since these differentiation operators are commutative, and corresponding initial condi-

tions are satisfied for functions (6).  

The fact that the found solution of the Cauchy problem in the class of entire func-

tions is unique, can be proved by method of contradiction (see, for example, [25]). 

The main result. The process of an acoustic wave propagation in a relax environ-

ment with data at the initial (zero) moment of time is described by the Cauchy prob-

lem (2), (3) for hyperbolic equation of third order; equation (3) is important in the 

problems of ultrasound diagnostics; a class of entire functions as a class of uniqueness 

solvability of problem is established; formula (8) for constructing the solution of the 

problem is proposed. 

3 The examples of application of the developed method and 

constructing the solution of problems with specific initial data 

Let us investigate the process of acoustic wave propagation for specifically given 

initial functions and the right-hand side of the equation, which are integer functions. 

We use the method of constructing the solution of problem from the previous section. 

Example 1. Let the initial functions in problem (2), (3) and the right-hand side of 

equation (2) are polynomials, such as 
0 1 2 3( )x x x x    , 

1 2( ) 2x x  , 2

2 1 3( )x x x  , 

( , ) 3f t x  . Then the solution of problem exists in the class of entire functions. It is 

unique and can be found by formula (8) due to Remark 1 and 3: 

 0

1 2 3

( , ) ( , , ) x

O

u t x V t e



 
  





   
   

   
 



6 

   
3

1 22

2 1 3

2 ( , , ) ( , , )x x

O O

V t e V t e 

 

   
  

 

 

 
 

  
 

2

0

3 2

0,

( , , )

3

t k

k
xk

O

e V t

e





 

  

   



 




  


 

0 0 0

1 2 3

( , , ) ( , , ) ( , , )

O O O

V t V t V t

  

     

  
  

  
  

  
 

1

0 1 2 3

2

( , , )
( , ,0)( ) 2

O

V t
V t x x x



 






   


 

 
3

1 2 22

1 3

( , ,0) 2 ( , , ) x

O

V t x V t e



  
 






  

 
 

2

0 1 2

3 2

0

( , ,0) ( , ,0) ( , ,0)
3

te V t V t V t



    

 


  



 

1 2 3 20 0 0 1 ( ) 0 2x x x t x           

3 (6 4) 6 8 (8 6) 2 ( 1)t tx t e t e             

 3 2 2 2

1

1 3
(1 2 ) ( 1 ) 2( 1 ) .

3 2

t tt t x e t t e t   
         


 

So, 



 

1 2 3 2

3

3 2 2 2

1

( , ) 2

(6 4) 6 8 (8 6) 2 ( 1)

1 3
(1 2 ) ( 1 ) 2 2 2 .

3 2

t t

t t

u t x x x x tx

x t e t e

t t x e t t t e

   

 

 

 

   

       


         



 

Since the initial data were polynomials, the obtained solution of the problem is also 

a polynomial. Only operations of differentiation were used to construct the solution. 

We note that the solution of problem linearly depends on parameter .  

Example 2. Let us describe the process of an acoustic wave propagation with zero 

initial conditions for 
1

9
   under the influence of external force 1( , ) sin

3

t x
f t x e . 

Therefore, we find the solution of problem (2), (3), for 
0 1 2( ) ( ) ( ) 0x x x      

and 1( , ) sin
3

t x
f t x e . Then according to Remark 4 by formula (8), we get 

1 0,

1
( , ) sin ( , , , )

3
O

u t x e H t x

 

 






 

 
  

 
, 
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where  
3

2

0 1 2

1
( , , , )

3

t xH t x e V V V e     



 
     
 

, and 
0 1 2, ,V V V  are functions 

(7). 

We have  

1 0,

1
( , ) sin ( , , , )

3
O

u t x e H t x

 

 






 

 
  

 
 

1 1,

1
sin ( , , , )

3
O

H t x

 

 


 

 
  

 
 

1, ,0,0, , 1, ,0,0, ,
3 3

2

i i
H t x H t x

i

   
      
   

  

   

1 1
0 1 2 0 1 23 3

3 3
2 / 3 2 / 3

2

i it tx xe V V V e V V V
e e

i

       


 
  

  1
0 1 2

27
sin

8 3

t x
e V V V      

1

2 13
27 2 2

1 sin
8 3 9 3

t
t x

e t t e


  
      

  
. 

Therefore,  
1

2 13
27 2 2

( , ) 1 sin
8 3 9 3

t
t x

u t x e t t e


  
      

  
. 

The obtained solution of the problem ( , )u t x  does not depend on the coordinates 

2x  and 
3x . If t   it goes to zero. 

The function ( , )u t x  describes periodic oscillations of an acoustic wave with a pe-

riod 2 3T   for coordinate 
1x  (see fig. 1). The amplitude of these oscillations is 

determined by the formula 
1

2 3
27 2 2

( ) 1
8 3 9

t
tA t e t t e


  

      
  

. 

Graphic time dependence of amplitude ( )A t  and  ,u t x  for 1

3

6
x   and 

2

3

4
x   is depicted on Fig. 2 with solid and dashed lines. 
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Fig. 1. The dependence of the value of the solution 

on the time variable and the spatial coordinate 
1x  

 

 

Fig. 2. Graphs of amplitude (solid line) and  

profiles of sound wave for 1

3

6
x   and 2

3

4
x   (dashed line) 

Only values of function ( , , , )H t x   in the points ( 1, ,0,0, , )i t x   and ( 1, ,0,0, , )i t x  

were used to solve the problem. The equalities  
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1

1

1 2 3

1 2 3

( , , , ) ( , , , , , , ),

( , , , ) ( , , , , , ),

( , , , ) ( 1, , , ),

i

i

e H t x H i t x

e H t x H i t x

e H t x H t x







     

     

   













 

 

 

 

that are correct for an arbitrary integer function ( , , , )H t x   with variables 1 , 2 , 

3  and   were used. 

 

4 Conclusions 

 

The class of existence and uniqueness of the Cauchy problem solution for the hyper-

bolic equation of third order has been established. The method of constructing the 

solution of Cauchy problem for arbitrary entire initial functions and an arbitrary entire 

right-hand side of the equation is given. In the case if the data of problem has a quasi-

polynomial form, according to the proposed method, the solution of Cauchy problem 

can be found only with operations of differentiation. In particular, it is illustrated by 

Examples 1 and 2. 

The results of the researches can be used in the problems of ultrasound diagnos-

tics. The obtained results and the developed method constitute an important theoreti-

cal basis for the mathematical modeling of the acoustic wave propagation process in a 

relax environment. 

The main conclusion of the application of the presented results in medical practice 

is the possibility to find exactly the determining parameters of the wave process. 
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