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Abstract. Despite ongoing research advances in the medical field, mental
disorders remain subject to the absence of a common etiology. The current
diagnosis of the syndromes is based on descriptive criteria whose inter-
pretation is often specific to the clinician. Biomarker research is thus of
paramount importance to move forward towards a more objective psychi-
atric diagnosis. In children, a leap in the knowledge of Attention Deficit Hy-
peractivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) would
allow to diagnose these highly prevalent disorders better and earlier. There
is great hope that computational approaches may tackle this question, no-
tably through the capabilities provided by modern Data Mining (DM). Di-
agnosis predictors are sought among features extracted from brain data
such as resting-state functional Magnetic Resonance Imaging (rs-fMRI)
signals. This paper aims to provide a comprehensive synthesis of the re-
cent literature about DM for diagnosis prediction based on rs-fMRI sig-
nals extracted from the open and freely available ADHD-200 and ABIDE
collections, related respectively to ADHD and ASD. We also present some
perspectives for the development of diagnosis aid models with greater ap-
plicability and efficiency.

Keywords: Children mental disorders · Resting-state functional magnetic
resonance imaging · Data Mining

1 Introduction

A thriving culture of data sharing in the neuroimaging community

For some years now, the culture of data sharing has been encouraged by the
neuroimaging community to multiply research efforts for a better understanding
of mental disorders. The 1000 Functional Connectomes Project (1000 FCP) and
the International Neuroimaging Data Sharing Initiative (INDI) were pioneers in
this regard [28].

Among neuroimaging technologies, resting-state functional Magnetic Reso-
nance Imaging (rs-fMRI) is appreciated for its practicality [22]. In particular, the
? Copyright c©2019 for this paper by its authors. Use permitted under Creative Commons

License Attribution 4.0 International (CC BY 4.0).



2 S. Itani et al.

task-free nature of rs-fMRI acquisitions facilitates the pooling of data from differ-
ent imaging sites worldwide, and thus the constitution of large datasets. Blood-
Oxygen Level Dependent (BOLD) signals are derived from rs-fMRI images. These
signals are related to the changes in blood oxygenation due to the neuronal ac-
tivity measured in each voxel [27]. The extraction and preprocessing of BOLD
timecourses is a process far from being trivial and straightforward. Preprocessed
data have been generously been made available for some INDI datasets to open
up the opportunity for non-medical experts of contributing their expertise.

The ADHD-200 and ABIDE datasets as successful outcomes

Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder
(ASD) are neurodevelopmental disorders which start at early age, and whose
symptoms are still seen through adulthood. Though research has evidenced neu-
robiological and genetic origins for such disorders, there is no scientific consen-
sus on a common etiology. Accelerating research on these disorders was the
source of motivation for the release of the ADHD-200 and ABIDE collections.

The ADHD-200 collection [3, 29] was proposed on the occasion of an in-
ternational contest. The ADHD-200 competition challenged researchers to pro-
pose a diagnosis aid model able to predict ADHD with the best prediction accu-
racy [29]. The ADHD-200 collection includes neuroimaging data on altogether
947 Typically Developing (TD) and ADHD subjects, with separate training and
test sets. There are three ADHD subtypes: Inattentive (ADHD-I), Hyperactive-
Impulsive (ADHD-HI) and a Combination of both types (ADHD-C). The data
collection results from the contribution of eight imaging sites: Peking Univer-
sity (PU), Kennedy Krieger Institute (KKI), NeuroImage (NI), New-York Univer-
sity Child Study Center (NYU), Oregon Health & Sciences University (OHSU),
University of Pittsburgh (Pitt.U), Washington University in St. Louis (WU) and
Brown University3.

The Autism Brain Imaging Data Exchange (ABIDE) [8, 11] initiative has com-
piled a large set of brain data related to TD and ASD subjects. This dataset was
not intended specifically for a competition. Two compilations were proposed by
the ABIDE initiative: the ABIDE-I and ABIDE-II datasets, which were released re-
spectively in 2012 and 2016, by 17 and 19 contributing sites, on 1112 and 1119
subjects [10, 11]. The ABIDE-I dataset has been the most studied up to now. The
ABIDE-I collection is attractive since it proposes preprocessed data unlike the
ABIDE-II dataset.

A strong involvement by the data mining community

Over the last ten years, the availability of open and freely available datasets such
as the ADHD-200 and ABIDE collections has attracted interest from the commu-
nity of Data Mining (DM) [3], which gives a new impetus to the neuroscience
research. In the present paper, we propose a general overview on the DM works

3 The data from this site are usually discarded as diagnosis labels are not provided.
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Table 1: Atlas specifications [31]

Atlas # ROIs

Automated Anatomical Labeling, including cerebellum (AAL116) 116
Automated Anatomical Labeling, excluding cerebellum (AAL90) 90
Eickhoff-Zilles (EZ) 116
Harvard-Oxford (HO) 110
Talaraich and Tournoux (TT) 110
Craddock 200 (CC200) 200
Craddock 400 (CC400) 400
Dosenbach 160 160

which tackled ADHD and ASD diagnosis prediction based on the rs-fMRI signals
extracted from the ADHD-200 and ABIDE datasets.

The remainder of the paper is organized as follows. First, we present the
modalities for brain exploration (see Sec. 2) and the methods proposed to han-
dle data heterogeneity (see Sec. 3). We also elaborate on the personal and brain
features that are usually used as diagnosis predictors (see Sec. 4). These first
sections will thus allow the reader to understand the data, the related prepro-
cessing steps, and the features that are usually considered to perform diagnosis
prediction. Then, we expose our literature review (see Sec. 5). Finally, the paper
concludes with a discussion on the state of the art and some future perspectives
(see Sec. 6).

2 Brain exploration

Basically, the modalities for brain exploration relate to two distinct aspects.

– Node definition: the representation of the brain into nodes may be either
voxel-based or region-based. Many region-based parcellations (atlases) exist
(see Table 1); they may significantly reduce the amount of data.

– Analysis level: this aspect relies on three parameters.

• Nature of features: element-wise features (e.g., BOLD signals) relate to
each brain node (voxel/region), while network-based features relate to
the interactions existing between the brain nodes.

• Scale of investigation: the brain may be studied in its entirety, but it is
also possible to focus on specific regions or sub-networks.

• Frequency band: frequency oscillations in the band [0.01, 0.1] Hz are thought
to be related to the neuronal activity [42]. Interestingly, the amplitude of
these slow oscillations may also be studied on some narrower standard-
ized frequency bands: SLOW-5 ([0.01, 0.027] Hz), SLOW-4 ([0.027, 0.073]
Hz), SLOW-3 ([0.073, 0.198] Hz), and SLOW-2 ([0.198, 0.25] Hz) [17].
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3 Heterogeneous data processing

Multi-site medical data are subject to many sources of disparities [19, 20]. The
experimental conditions differ from a site to another, e.g., the subject may be
asked to open or close his/her eyes during the exam. The cultural and social
contexts in which these data are collected may also constitute significant factors
of disparity. Likewise, the diversity of ages should be handled properly: the hu-
man brain neither works nor is structured in the same way in a lifetime [25].
Many approaches were considered to deal with such sources of heterogeneity.

– Merging all the training data regardless of the disparities, hoping that
the training process will reach a suitable level of generalization, e.g., see [41].

– Merging all the training data with the internal handling of the dispari-
ties. There are basically two ways to achieve this.
• Applying some adjustments to homogenize the data at best. This may be

done by adding a nominal training variable which identifies the sites in
which the data were collected. Intensity normalization techniques may
also be applied on BOLD signals to address between-subject variations
e.g., see [2, 5, 12, 13, 36].

• Merging all the data within a single training set, and integrating the as-
sessment of robustness to the training process. Two Cross-Validation (CV)
strategies were proposed to deal with multi-site datasets. Intra-site CV [1]
consists of randomly splitting the initial training set into training and test
subsets in which each site is represented in proportion to its weight in
the original training set. Inter-site CV [1, 18] aims to test the perfor-
mances of a classifier against each site subset alternately.

– Constituting the most possible homogeneous subsets based on inclusion
criteria e.g., site, age, IQ. In this case, the prediction targets specific subjects’
profiles, e.g., see [6, 7, 9, 14, 16, 22, 23, 26, 32, 33, 38–40].

4 Features

4.1 Phenotype

Phenotypic features are among the simplest data found to describe a patient.
These data relate to information such as age, gender, Intellectuel Quotient
(IQ), and handedness. Phenotypic features may also include scores related to
screening tests which are usually used for behavioral assessment and diagnosis.
Another important feature is the diagnosis label related to each subject. In the
remainder, we denote indifferently as Typically Developing (TD), Typical Control
(TC) or NeuroTypical (NT), the subjects who are disorder-free. In other cases,
the subjects are affected either by ADHD or by ASD.

4.2 Frequency

The fMRI signals present a frequency content which is worth summarizing as fea-
tures. In this respect, it is common to consider the Discrete Fourier Transform
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(DFT), computed through the popular Fast Fourier Transform (FFT) algorithm.
Several features are extracted from a brain signal in the frequency domain.

– The amplitudes of the FFT coefficients and the estimation of the power
spectrum are among the most common features.

– The Amplitude of Low Frequency Fluctuations (ALFF) [42] corresponds to
the averaged square root amplitudes of the FFT power spectrum on a given
frequency range (typically between 0.01 and 0.1 Hz).

– The fractional Amplitude of Low Frequency Fluctuations (fALFF) [45]
corresponds to the ALFF of a signal divided by the ALFF computed over the
whole frequency range (typically between 0 and 0.25 Hz).

4.3 Connectivity

Functional Connectivity (FC) is a basic measure of interactions between brain
nodes: it has proved to provide discriminative biomarkers for the identification
of ADHD and ASD.

Correlation is mostly considered to compute FC. In this respect, the Pearson
Correlation Coefficient (PCC) measures pairwise correlations related to the ac-
tivity of the brain nodes [4]. In general, correlation-based FC results in a dense
brain network [32]. This may penalize the performance of classifiers trained on
such measures. Dimensionality reduction techniques or thresholding may alle-
viate this issue. At a local scale, Regional Homogeneity (ReHo) [43] measures
the functional connectivity between a node and its spatially closest neighbors.
The ReHo is computed as the Kendall’s coefficient of concordance [24].

Clustering techniques constitute an interesting alternative to address the de-
tection of functionally coordinated brain nodes, which provides a comprehensive
and simplified view of the brain network. The resulting connectivity matrix in-
forms about whether a pair of nodes are connected (value: 1) or not (value: 0).
The K-means technique was successfully used to this end [44]. The number of
cluster centroids K is a parameter of the method. Iteratively, each brain node is
assigned to the closest centroid based on the similarity of their timeseries. After
an iteration, the centroids are computed as the mean of each cluster. The same
process is applied until convergence. The main drawback of such a technique
is the necessity to define the number of cluster centroids beforehand. Such an
issue was recently addressed in [32].

Representation learning was lately considered to compute FC, exploiting
the potentialities of deep learning methods such as the Convolutional Neural
Network. FCNet, proposed in [33], implements such an idea: it computes FC
without the need to resort to distance-based measures. FCNet is advocated as a
method which takes into consideration the inherent characteristics of the time-
series to compute a pairwise measure of similarity directly from the raw data.

4.4 Complex network measures

Networks computed from fMRI data are weighted and undirected. In such net-
works (or graphs), two adjacent nodes are connected by an edge. The adjacency
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Table 2: Complex network measures, with definitions found in [7, 9, 34]

MEASURE DEFINITION

Basic concepts
Degree (or strength) Number of connections incident on a node. Measure of centrality.
Shortest Path Length (SPL) Shortest distance between a pair of nodes
Integration
Characteristic Path Length (CPL) Average path length (in number of edges); influenced by long paths.
Global efficiency Inverse of CPL; influenced by short paths.
Segregation
Clustering coefficient Fraction of triangles in the neighborhood of a node.
Local efficiency Global efficiency computed on the neighborhood of a given node.
Centrality
Betweenness centrality Fraction of the shortest paths that include a node.
Participation coefficient Degree to which a node eases intermodular connection.
Resilience
Average neighbor degree Average degree measured over the neighbors of a given node.
Assortativity coefficient Correlation between connected nodes.

matrix A indicates the pairwise connections existing between the nodes of the
graph. This matrix is derived from the FC matrix by a filtering operation, e.g.,
thresholding or binarization [15]. Table 2 presents some main complex network
measures; the reader can obtain more information in [34]. The characteristics
are defined in the case of a binary network; the definitions are easily adapted
to weighted networks. These features are related to different aspects of brain
functionality described below.

– Integration is related to the ease with which information is communicated
between the nodes of the network. Integration measures are defined around
the concept of path length.

– Segregation is related to the existence of identifiable subnetworks, called
clusters or modules, within the network. Segregation measures are defined
around the concept of number of triangles.

– Centrality is related to how a node interacts with the others, how it favors
integration, and how it contributes to the network resilience. The degree is
a basic and common measure of centrality.

– Resilience is related to the impact of an adjustment brought to the network.
The assortativity coefficient is an important measure of resilience. In assor-
tative networks, nodes are likely to be connected to nodes with a similar
degree. This involves that removing a high-degree node from the network
will have a small impact on the network connectivity [30].

4.5 Timeseries

The rs-fMRI signals may be either directly processed by a classification algorithm
specifically intended for timeseries (e.g., Long-Short Term Memory (LSTM) [12])
or reduced prior to classification.
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5 Related work

Tables 3 and 4 give a global picture of research works which tackled diagnosis
prediction through DM on rs-fMRI signals extracted from the ADHD-200 and
ABIDE datasets. We comment on them below.

5.1 ADHD-200 collection

At the end of the ADHD-200 contest, it was shown that phenotype (PHEN)
outperforms neuroimaging features for diagnosis with a prediction accuracy of
63.7% achieved by a Logistic Regression (LR) [5]. The solution was judged as
out of scope since the competition was precisely intended to promote the use
of neuroimaging data for diagnosis prediction. For its part, the official winning
team proposed a classification system built on phenotypic features and biomark-
ers derived from functional and structural brain data [13]. This system com-
prised four classifiers whose predictions were combined through a vote. With a
test accuracy of 61%, this sophisticated system barely achieved the performance
yielded from the only use of phenotypic data. In the second place of the official
ranking, the work of [7] achieved site-specific diagnosis predictions in two steps.
First, the predictions of SVMs learned on different types of features were com-
bined by a majority vote to classify ADHD and TD subjects. The ADHD subtype
was then predicted as the most prevalent one in each training set site. Such a
strategy lead to an overall accuracy of 59% on the test set. A few time after the
competition, Sidhu et al. [36] performed a kernel Principal Component Analysis
(kPCA) on the amplitude of the FFT coefficients derived from the rs-fMRI sig-
nals. The resulting factors were used in combination with phenotypic features
to learn a LR which achieved a final test accuracy of 68.6%.

Since then, a considerable number of research works have tackled ADHD pre-
diction. In Table 3, we indicate for each work whether the issue was addressed
as a 2-class (TC vs ADHD), a 3-class (TC vs ADHD-I vs ADHD-C) or a 4-class
(TC vs ADHD-I vs ADHD-C vs ADHD-HI) problem. Due to the low proportion
of ADHD-HI cases in the dataset, the subtype prediction generally concerns the
inattentive and combined patterns of ADHD. Site-specific classification has been
envisaged in the works which are marked by an asterisk (see column Problem).

A general observation on the state of the art is the common use of FC (by
correlation, noted as ρ, clustering, learning, or ReHo) and network measures as
training features. The work of [39] stood out from this common practice, and in-
troduced the interesting concept of Functional Volume (FV), which is not directly
derived from the rs-fMRI signals. As a counter-part of anatomical volume, the FV
of a given brain region represents the percentage of voxels which were function-
ally active over time. In [35], measures of fALFF and ReHo were combined to a
spatial map determined by applying Independent Component Analysis (ICA) to
the BOLD signals. The work of [19, 21] uses the variance of the BOLD signals as
predictors and selects the most discriminative ones through a Correlation-based
Feature Selection (CFS) approach.
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Features are computed, processed and eventually combined in a myriad of
ways. A diversity of pipelines for feature engineering are thus found in the liter-
ature. As regards data reduction, it is usually performed with algorithms such as
PCA, Elastic Net (EN), SVM with Recursive Feature Elimination (SVM-RFE) and
Multi-Dimensional Scaling (MDS). Besides these traditional algorithms, other
original approaches were considered to process the rs-fMRI signals. In the same
spirit as MDS and LDA, the Transductive Maximum Margin Classification (TMMC),
proposed in [41], aims to project the data in a space characterized by a max-
imized discriminability, while preserving proximity relations between the in-
stances in the projection space. The Bag-of-Words (BoW) approach, used in [37],
achieves the transformation of timeseries into histograms which group the brain
nodes depending on their spatial localization and degree. In [2], a kind of
profile-based classification framework was achieved through a Non-negative Ma-
trix Factorization (NMF) decomposition. In this case, each subject is represented
by a vector concatenating exhaustive information (phenotypic features, func-
tional and structural features). The NMF allows to raise sparse reference vectors
in such a way that any instance may be written as a positive linear combination
of these basis elements. The weights were used to train a Decision Tree (DT).

5.2 ABIDE-I preprocessed collection

Unlike the ADHD-200 collection, the ABIDE-I dataset is concerned by an in-
creased diversity in the processing pipelines proposed by the investigators. This
is in part due to the absence of a common definition for training and test sets.
Moreover, the gender gap (14% of females vs 37% in the ADHD-200 dataset)
and age variability (7-64 years old vs 7-22 in the ADHD-200 dataset) in the
dataset often induced the definition of inclusion criteria on the basis of such
factors. Consequently, many options were considered to constitute homogenous
datasets. The inclusion criteria are presented in Table 4 (if applicable), with fur-
ther details concerning the preliminary processing of the data. We also indicate
the number (#) of subjects in the resulting training datasets.

As in the case of ADHD prediction, FC coefficients constitute a persistent
choice for ASD prediction. They have been used to train models such as SVM [6,
18, 22, 38], Random Forests (RF) [18] and Neural Network-based (NN-based)
ones [16, 18, 40]. The work of [12] stands out from this classical procedure. In-
deed, the authors tackled directly the rs-fMRI signals; the latter were normalized
(mean percentage change), resampled at intervals of 2 s and randomly cropped
to cover 90 observations. These operations allowed to increase the training set
size to 11000 samples. The signals were then input into a LSTM. The combina-
tion of the resulting coefficients with the phenotypic features was shown to be
efficient for diagnosis prediction through a fully connected neural network.

In [38], the FC coefficients were processed through a Spatial Filtering Method
(SFM) which was proposed as a supervised technique for dimensionality reduc-
tion. In the same spirit as LDA, SFM has the capability to project data in a space
where discriminability is maximized. But SFM differs from LDA in the way in
which such a goal is achieved, i.e., through the simultaneous diagonalization of
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the mean FC matrices computed across the ASD and TC subjects. Other reduc-
tion algorithms, considered in [6] and [40], were used to perform a ranking-
based feature selection on the FC coefficients based on indicators such as the
F-score and the χ2 statistical score respectively.

Lately, network measures of integration, segregation and centrality were con-
sidered for diagnosis prediction; their reduction was achieved through the Se-
quential Forward Floating (SFF) algorithm [23]. Starting with an empty feature
subset, the iterative algorithm performs, at each step, the selection of a feature
judged as meaningful in the sense of a given criterion. In this case, the feature
which yielded the best classification accuracy in combination with those of the
feature subset was held as relevant.

6 Discussion & Conclusion

Tables 3 and 4 report predictive accuracies achieved on the ADHD-200 and
ABIDE-I preprocessed collections. These results are related to the performances
achieved on a test set or with regards to a CV procedure. It is here important
to raise the interest of a common data segmentation into training and test sets.
This allows to facilitate the comparison of literature data, to perceive the related
contributions, and thus to accelerate research progress. The ABIDE-I dataset was
not released in the context of a competition, which probably explains the nonex-
istent segmentation into well-defined training and test data. Consequently, CV
approaches have been extensively favored to assess classification performance.
Beyond inter-site variability, demographic disparities have also multiplied the
strategies for data segmentation. With such a diversity of modalities for the def-
inition of a training set, it is quite difficult to perceive the advances made on the
ABIDE-I dataset.

For sure, the availability of large and free datasets gives an extraordinary
impetus for research, and such an effort of data sharing can only be applauded.
This definitely promotes the development of diagnosis aid models and the iden-
tification of explanatory biomarkers. With the availability of preprocessed data,
the issue has been made accessible to a broader community, including data min-
ers. As discussed in [20], the DM community definitely needs to be made aware
of the clinicians’ requirements towards diagnosis aid. For more applicability and
efficiency, data miners should integrate these specifics to their methodologies.
Of course, that raises the complex question of how to achieve this in practice,
but this remains to a very large extent within the competence of the data miners.
Nevertheless, to make their task easier, efforts are still expected from the neu-
roimaging community. The harmonization of the protocols for data collection
would no doubt improve the reliability and the quality of the research conducted
on these data. The neuroimaging community should also deal with the segmen-
tation of the data into common homogeneous subsets, i.e., sets of subjects that
may be reasonably studied simultaneously in view of their demographics.

Then, brain features are mostly drawn from the notion of connectivity in
possible combination with complex network measures. Though these features
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seem to show a certain efficiency as predictors, it would be worth assessing the
functioning of an individual node, regardless its interactions with others. ALFF,
fALFF and FV are examples of such features; they have been little considered
so far. Moreover, the role of phenotypic features in the predictive mechanisms
is a question of paramount importance. The research works which were inter-
ested in it expressed an observation beyond dispute. Phenotypic data improve
systematically the predictive performances acquired based on the only use of
neuroimaging data [12, 33, 36]. This is understandable to a certain extent since
the etiology of a neuropathology may be influenced by factors such as the age,
gender or IQ. Using the results of screening tests, as was the case in [2], is by
contrast questionable. Indeed, these tests are used by clinicians to make a di-
agnosis. Yet the resulting diagnosis labels are used by the supervised training
process. Therefore, the results of screening tests may lead to bias and to limit
the contribution of neuroimaging features in the prediction of a diagnosis.

There is an uncomfortable, but practically unavoidable aspect of supervised
learning in this context: the process relies on diagnosis labels deduced from
the traditional diagnostic procedures [22]. Yet these diagnostic labels are prone
to errors and result from subjective assessment techniques. This adds noise to
the analyzed datasets. The use of unsupervised techniques may alleviate this
drawback, without strong guarantees of success though. Indeed, recall that in
the current state of the neuroscientific knowledge, we ignore the biomarkers
(i.e., potential predictors) that may be of use to predict a neuropathology. In
orienting a model into the prediction of a diagnosis label, a supervised learning
task enables the emergence of discriminative predictors more explicitly.

In terms of classifiers, there has been a strong preference for SVMs, and more
recently for NN-based models with the advent of deep learning. Though they
have proved to be efficient, the interpretation of these models is not straight-
forward. Further research efforts deserve to be invested in this regard. Decision
trees could be prone to such a research. Of course, they are hardly suitable to
model complex relations but they could be studied as part of ensemble strategies
such as a set of decision trees learned on different types of features. This would
reinforce the predictive performances achieved with such models.

In conclusion, through this paper, we aimed to provide a summary of the fea-
tures, predictive models and modalities which are usually considered to achieve
predict ADHD or ASD based on rs-fMRI signals. A considerable number of re-
search works have addressed this challenge. The results achieved so far are
promising but there is still room for significant improvement to ensure a cer-
tain level of clinical validity.
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