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Abstract. Anomaly detection in supercomputers is a very difficult problem due
to the big scale of the systems and the high number of components. The cur-
rent state of the art for automated anomaly detection employs Machine Learning
methods or statistical regression models in a supervised fashion, meaning that
the detection tool is trained to distinguish among a fixed set of behaviour classes
(healthy and unhealthy states).

We propose a novel approach for anomaly detection in High Performance Com-
puting systems based on a Machine (Deep) Learning technique, namely a type
of neural network called autoencoder. The key idea is to train a set of autoen-
coders to learn the normal (healthy) behaviour of the supercomputer nodes and,
after training, use them to identify abnormal conditions. This is different from
previous approaches which where based on learning the abnormal condition, for
which there are much smaller datasets (since it is very hard to identify them to
begin with).

We test our approach on a real supercomputer equipped with a fine-grained, scal-
able monitoring infrastructure that can provide large amount of data to character-
ize the system behaviour. The results are extremely promising: after the training
phase to learn the normal system behaviour, our method is capable of detecting
anomalies that have never been seen before with a very good accuracy (values
ranging between 88% and 96%).

1 Introduction

High Performance Computing (HPC) systems are complex machines with many com-
ponents that must operate concurrently at the best of their theoretical performance. In re-
ality, many factors can degrade the performance of a HPC system: hardware can break,
the applications may enter undesired and unexpected states, components can be wrongly
configured. A critical aspect of modern and future supercomputers is the capability of
detecting faulty conditions stemming from the improper behaviour of one or multiple
parts. This issue is relevant not only for scientific computing systems but also in data
centers and clouds providers, whose business strongly relies on the availability of their
web services. An automated process for anomaly detection would be a great improve-
ment for current HPC systems, and it will probably be a necessity for future Exascale
supercomputers. Nowadays, monitoring infrastructures are available in many HPC sys-
tems and data centers, used to gather data about the state of the systems. Given the
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deluge of data , real-time identification of problems and undesired situations is a daunt-
ing task for system administrators. In this paper we present a novel approach to deal
with this issue, relying on a fine-grain monitoring framework and on an autonomous
anomaly detection method that uses Machine Learning (ML) techniques.

Automated anomaly detection is still a relatively unexplored area in the HPC field.
The current state-of-the-art relies on supervised [18] ML methods that learn to distin-
guish between healthy and faulty states after a training phase during which the super-
computer must be subjected to both conditions (labeled training data). This requirement
complicates the training process: in HPC systems, data is very abundant but labels are
scarce. However, in supercomputers the normal behaviour is predominant — and can be
deterministically restored by system administrators. The same cannot be said for faulty
behaviour, which is undesired, sporadic and uncontrolled. Furthermore, labelling faulty
conditions is a expensive task and thus the correct labeled data sets required by typical
supervised approaches are not available in supercomputers.

Conversely, there is another type of ML that does not require any label and it is
referred to as unsupervised [18] learning. In this case the data set contains only the
features describing the system state and no labels; the learning algorithm learns use-
ful properties about the structure of the dataset. To address the issue, we propose an
anomaly detection method less dependent on labeled data; to be precise, our approach
belongs to the semi-supervised branch of ML, which combines the two methodologies
described before. Our idea is to use autoencoders [11] to learn the normal behaviour
of supercomputer nodes and then to use them to detect abnormal states. In our method
we require labels during the pre-processing phase because we need to obtain a data set
containing only normal conditions. After this “normal” data set has been obtained the
training of the ML model proceeds in unsupervised fashion, without the need of labels.
A critical advantage of our method is that it will be able to identify faulty conditions
even though these have not been encountered earlier during the training phase. With
our method we do not need to inject anomalies during the training phase (possibly not
feasible in a production system) and we do not require system logs or changes to the
standard supercomputer users’ work flow.

The main contributions of our approach are: 1) a very precise anomaly detection
rate (up to 88%-96% accuracy); 2) identification of new types of anomalies unseen dur-
ing the initial training phase (thanks to its semi-supervised nature); 3) no need for large
amount of labeled data. To demonstrate the feasibility of our approach we consider a
real supercomputer hosted by the Italian inter-universities consortium CINECA [1]. We
use historical data collected with an integrated monitoring system to train our autoen-
coders and then we test them by injecting anomalies in a subset of the computing nodes;
the experimental results show how this approach can distinguish between normal and
anomalous states with a very high level of accuracy.

2 Related Works

Tuncer et al. [19] deal with the problem of diagnosing performance variations in HPC
systems. The approach is based on the collection of several measurements gathered by
a monitoring infrastructure; from these measures, a set of statistical features describ-



26 A. Borghesi et al.

ing the state of the supercomputer is extracted. The authors then train different ML
algorithms to classify the behaviour of the supercomputer using the statistical features
previously mentioned. Unfortunately the authors propose a supervised approach which
is not perfectly suited for the HPC context. Dani et al. [8] present an unsupervised
approach for anomaly detection in HPC. Their work is remarkably different from our
approach since they do not rely on a monitoring infrastructure but consider only the
console logs generated by computing nodes.

Although not yet applied to the HPC field, Deep Learning based approaches for
anomaly detection have been studied in other areas [7, 15, 14], especially in recent
years. Lv et al. [17] propose a deep learning based algorithm for fault diagnosis in
chemical production systems. The proposed method is capable of real time detection
and classification and, moreover, it can do the diagnosis online. Nevertheless, their ap-
proach is supervised and thus it definitely differs from ours. Lee et al. [16] introduce
a convolutional neural network (CNN) model for fault identification and classification
in semiconductor manufacturing processes. This method makes it possible to locate the
variable and time information that represents process faults. Ince et al. [12] discuss a
CNN-based method for electrical motor fault detection; their method can work directly
on the raw measurement data, with no preprocessing. The neural network combines
feature extraction and classification, but proceeds in a supervised manner.

3 Data Collection

A very important aspect for our anomaly detection approach is the availability of large
quantity of data that monitors and thus describes the state of a supercomputer. To test
our approach we take advantage of a HPC system with an integrated monitoring in-
frastructure, D.A.V.I.D.E.[2], an energy efficient supercomputer hosted by CINECA in
Bologna, Italy. It has by 45 nodes with a total peak performance of 990 TFlops and an
estimated power consumption of less than 2 kW per node. The system was ranked #440
in TOP500 [9] and #18 in GREENS500 [10] in November 2017 list. The data collec-
tion infrastructure deployed in D.A.V.I.D.E. is called Examon and has been presented
in previous works [4, 3]. Examon is a fine-grained, lightweight and scalable monitor-
ing infrastructure for Exascale supercomputers. The data coming from heterogeneous
data sources is gathered in an integrated and uniform repository, making it very easy to
create data sets providing a holistic view of the supercomputer and thus describing the
system state. Due to storage limitation, fine-grained data older than a week is discarded
but job information and coarse-grained data are preserved long-term. For this paper, we
work with the coarse-grained data aggregated in 5-minutes long intervals. Furthermore,
we focused on a subset of the data collected by Examon; for each node we have 166
metrics (our features), i.e. core loads, temperatures, power consumptions, etc.

4 The Autoencoder-based Approach

We aim at detecting anomalies that happen at the node-level. Currently, we focus on
single nodes. We create a set of separate autoencoder models, one for each node in
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the system. Each model is trained to learn the normal behaviour of the correspond-
ing node and to be activated if anomalous conditions are measured. If an autoencoder
can learn the correlations between the set of measurements (features) that describe the
state of a supercomputer, then it can consequently notice changes in these correlations
that indicate an abnormal state. Under normal operating conditions these features are
linked by specific relations (i.e. the power consumption of a core is directly related to
the workload and temperature to the power and frequency). We hypothesize that these
correlations will be perturbed if the system enters in an anomalous state.

The reconstruction error is the element we use to detect anomalies. An autoencoder
can be trained to minimize this error. In doing so, it learns the relationships among the
features of the input set. If we feed a trained autoencoder with data not seen during
the training phase, it should reproduce the new input with good fidelity, at least if the
new data resemble the data used for the training. If this is not the case, the autoencoder
cannot correctly reconstruct the input and the error will be greater. We propose to detect
anomalies by observing the magnitude of the reconstruction error.

All autoencoders have the same structure. We opted for a fairly simple structure
composed by three layers: I) an input layer with as many neurons as the number of fea-
tures (166), IT) a densely connected intermediate sparse layer [5] with 1660 neurons (ten
times the number of features) with Rectified Linear Units (ReLu) as activation functions
and a L1 norm regularizer [11], III) a final dense output layer with 166 neurons with lin-
ear activations. This network was obtained after an empirical evaluation, after having
experimented with different topologies and parameter configurations. To summarize,
our methodology has the following steps: 1) create an autoencoder for each computing
node in the supercomputer; 2) train the autoencoders using data collected during normal
operating conditions; 3) identify anomalies in new data using the reconstruction error
obtained by the autoencoders.

5 Experimental Evaluation

In every HPC system there are multiple possible sources of anomalies and fault con-
ditions, ranging from hardware faults to software errors. In this paper we verify the
proposed approach on a type of anomaly that easily arises in real systems and happens
at the level of single nodes, namely misconfiguration. More precisely, we consider the
misconfiguration of the frequency governor of a computing node. Modern Linux sys-
tems allow to specify different policies regulating the clock speed of the CPUs, thanks
to kernel-level drivers referred as frequency governors [6]. Different policies have dif-
ferent impacts on the clock speed, frequency and power consumption of the CPUs.

We considered three different policies. The first one, conservative, is the default
policy on D.A.VI.D.E. (the normal behaviour); it sets the CPU clock depending on
the current CPU load. Two other types of policies have been used to generate anoma-
lies, 1) the powersave policy and ii) the performance policy. These frequency governors
statically set the CPU to the, respectively, lowest and highest frequency in the allowed
range.
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5.1 Results

In this work we used an off-line approach. We gathered the measurements collected
during months of real usage of D.A.V.ILD.E. and we created a data set; the data is
normalized to have values in the range [0, 1]. The data set is split in 3 components: 1)
the training set D74, (containing data points within periods of normal behaviour), 2)
the test set without anomalies D%St (again, only periods of normal behaviour) and 3)
the test set with anomalies D4}, (the periods when we injected anomalies on some
nodes).

For these experiments we selected a subset of the data collected by Examon during
D.A.VID.E. lifetime. The period we considered is 83 days long, from March 2018
to May 2018. During this period D.A.V.LLD.E. was in the normal state for most of the
time — 66 days, 80% of the time — while we forced anomalous states for smaller sub-
periods of a few days, 13 days in total. Since we know when the anomalies were injected
identifying D#_, is trivial. Dryqin, and DY, _, were created by randomly splitting the
data points belonging to the 66 days of normal state, 80% of the data points going to
Dryain and 20% to Dgest.

Each autoencoder is trained with Adam [13] optimizer with standard parameters,
minimizing the mean absolute error; the number of epochs used in the training phase is
100 and the batch size has a fixed value (32). These values were chosen after a prelimi-
nary exploration because they guarantee very good results with very low computational
costs. The time required to train the network is around 5 minutes on a quad-core pro-
cessor (Intel 17-5500U CPU 2.40GHz) with 16GB of RAM (without using GPUs).

Reconstruction Error-Based Detection As explained previously, our anomaly detec-
tion method relies on the hypothesis that an autoencoder can be taught to learn the
correlations among the features in a data set representing the healthy state of a super-
computer node. In this case the autoencoder would be capable to reconstruct an input
data set never seen before, if this new input resembles the healthy one used during
the training phase — if in the unseen data set the features correlations are preserved.
Conversely, an autoencoder would struggle to reconstruct data sets where the learned
correlations do not hold. To demonstrate our hypothesis, we expect to observe higher
reconstruction errors for the anomalous periods with respect to the error obtained in
normal periods. We are not strictly interested in the absolute value of the reconstruction
error but rather on the relative difference between normal and anomalous periods.

This reconstruction error is plotted in Figure 1; it displays the results computed
for node davide45 (other nodes were omitted for space reason but their behaviour is
very similar). The x-axis and y-axis show, respectively, the time and the normalized
reconstruction error (we sum the error for each feature and divide by the number of
features N F'). The reconstruction error trend is plotted with a light blue line; the gaps
in the line represent periods when the node was idle and that have been removed from
the data set.

We observe 6 anomalous periods (highlighted by colored lines along the z-axis):
during the first 5 (red lines) the frequency governor was set to powersave while dur-
ing the last one (blue) the governor was set to performance. The reconstruction error
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Fig. 1: Reconstruction error for node davide45

is never exactly zero, but this is not our concern: our analysis does not rely on the ab-
solute value of the error, but rather on the relative magnitude of the errors computed
for different data sets. The reconstruction error is indeed greater when the nodes are
in an anomalous state, as underlined by the higher values in the y-axis in the periods
corresponding to anomalies. Hence, the autoencoder struggles to recreate the “faulty”
input data set. Although the plot shown is promising, it does not actually show that the
reconstruction error for unseen healthy input is actually lower than the error committed
with anomalous periods. This happens because the normal behaviour data set was ran-
domly split in the subset D4, and D%St and it is impossible to distinguish between
them by simply looking at the plot. However, our insight is backed by the quantitative
analysis. To measure the quality of the anomaly detection we rely on the Mean Absolute
Error (MAE) and on the Root Mean Squared Error (RSME). For each autoencoder we
computed MAE and RSME for every set Drqin, DY, ., and D3 __..

The results obtained for all autoencoders are very similar but in order to make a
fair comparison between different nodes we do not use the absolute values of MAE
and RSME but we rather employ a normalized version: the normalized MAE (RSME)
is obtained by dividing the actual MAE (RSME) by the MAE (RSME) computed for
Dryqin. In this way we force the normalized error for the training set to be equal to 1
(since we are not strictly interested in its absolute value) and we highlight the relative
difference of error between sets. If the normalized error for a test set is close to one this
means that the autoencoder was able to reconstruct the input quite well; larger errors
imply that the autoencoder was not capable to reproduce the input — these situations
are those that we claim to be anomalies. The normalized MAE for DY, _, is equal to
1.08 and the MAE for DZ#__, is 14.54; the normalized RMSE are, respectively, 1.17
and 11.18. The errors for D74, are always equal to 1 (due to the normalization).

The results clearly indicate that our hypothesis holds true (as hinted also by the
previous plot with the reconstruction error). Both the average normalized MAE and
RSME for the test set with no anomalies D%st are very close to 1, suggesting that
the autoencoders have correctly learned the correlations between the measured features
of a healthy system. Therefore, when the autoencoders are fed with unseen input that
preserve these correlations they can reconstruct it with good precision. On the contrary,
the autoencoders cannot correctly reproduce new input that does not resemble a healthy
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Fig. 2: Error distribution for node davide45

system, that is a system in an anomalous state. This is shown by the markedly higher
normalized MAE and RSME obtained for D4, _,.

Detection Accuracy So far we have observed the reconstruction error trends obtained
by our approach based on autoencoders, but we still have to discuss how the reconstruc-
tion error can be used to actually detect an anomaly. Our goal is to identify an error
threshold 6 to discriminate between normal and anomalous behaviour. In order to do so
we shall start by looking at the distributions of the reconstruction errors. Again, we are
considering each autoencoder (and thus corresponding node) separately. We distinguish
the errors distribution for healthy data sets (D7qin U D?est) and for the unhealthy data
set (D4,.,). Figure 2 shows the error distributions for the autoencoder corresponding
to node davide45 — again other nodes have the same behaviour. The graph contains
the histograms of the error distributions; in the z-axis we have the reconstruction er-
ror and in the y-axis there is the number of data points with the corresponding error.
The left-most sub-figure (Fig. 2a) shows the error distribution for the normal data set
(D7yrain U D]TVest) and the other one (Fig. 2b) shows the distribution for the anoma-
lous data set. It is quite easy to see that the errors distribution of the normal data set is
extremely different from the anomalous one.

Since we can clearly distinguish the error distributions we opted for a simple method
to classify each data point: if the reconstruction error E; for data point ¢ is greater than a
threshold 6, then the point is “abnormal”; otherwise the data point is considered normal.
The next step is to identify the threshold used to classify each data point. We choose as a
threshold the n-th percentile of the errors distribution of the normal data set, where n is
a value that depends on the specific autoencoder/node. In order to find the best n value
for each autoencoder we employed a simple generate-and-test search strategy, that is
we performed experiments with a finite number of values and then chose those guaran-
teeing the best results in term of classification accuracy. Generally, the best results are
obtained with higher thresholds, i.e. n > 93. To asses the accuracy of the classification
we compute the F-score for each class, normal (N) and anomaly (A). In Table 1 we
see some results. In the first column from the left there is the node whose autoencoder
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F-score values are reported (we report the values for only a subgroup of nodes). The
remaining columns report the F-score values for 3 different n-th percentiles (and there-
fore different thresholds); there are two F-score values for each n-th percentile, one
computed for the normal class (V) and one for the anomaly class (A).

95-th perc. 97-th perc. 99-th perc.
N A N A N A

davide17 0.97 0.89 0.98 0.93 0.99 0.97
davide19 0.97 0.90 0.98 0.94 0.99 0.97
davide45 0.97 0.92 0.98 0.95 0.99 0.98

davide27 0.95 0.90 0.91 0.77 0.86 0.52
davide28 0.94 0.88 0.96 0.89 0.90 0.69
davide29 0.97 0.75 0.98 0.82 0.99 0.85

Node

Average 0.96 0.87 0.96 0.88 0.95 0.82
Table 1: Classification Results

The table can be divided in three subparts (separated by horizontal lines): 1) the
first one contains nodes similar to davide45, i.e. nodes where most of the anomalies
were of type powersave; 2) the second group is comprised of nodes where most of the
anomalies had the frequency governor set to performance; 3) the last group (the last
row) is the average of the other nodes. In general we can see that the F-score values
are very good, highlighting the high accuracy of our approach. A notable difference
can be observed between the two sub-groups of nodes. In nodes with a prevalence of
powersave anomalies higher thresholds (higher n-th values) guarantee better results:
this happens because, as seen for instance in Figure 2, the error distributions are more
separable. In the case of nodes characterized by more anomalies of performance type,
increasing the threshold does not necessarily improve the accuracy — although this can
still occur for some nodes. In these nodes it is harder to distinguish normal data points
from anomalies of type performance (since they behave similarly).

6 Conclusion

In this paper we proposed an approach to detect anomalies in a HPC system that relies
on large data sets collected via a lightweight and scalable monitoring framework and
employs autoencoders to distinguish between normal and anomalous system states.

In the future we plan to further validate our method by testing it on a broader set of
anomalies. Our goal is to expand the anomaly detection technique in order to be able
to also classify different types of anomalies; in addition to recognize that the system is
in an anomalous state, the autoencoder (possibly a refined and more complex version)
will be also able to distinguish among different anomaly classes and sources. We also
plan to implement our approach in a on-line prototype to perform real-time anomalous
detection on a supercomputer, again using D.A.V.L.D.E. as a test bed.
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