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Abstract. UWB signals can be used to accurately measure ranges over short to 

medium distances (10 cm to 300 meters). These signals may be used for many 

positioning applications such as robot automation. Hence, many companies seek 

to exploit UWB signals. Many manufacturers are already offering chipsets that 

calculate the Time of Flight (TOF) for Two-Way-Ranging (TWR) with UWB 

signals. UWB ranges typically have an accuracy of 10 cm making them useful 

for not only estimating position, but potentially also for estimating the heading 

of a moving vehicle. This paper proposes a method using multiple UWB ranges 

to estimate 2-D relative position and heading of vehicle with respect to another. 

The method is described, a covariance simulation is presented and initial experi-

mental results are discussed. 
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1 Introduction 

The demand for autonomous vehicles is expected to grow in coming decades. These 

vehicles are required to be easy to control in order to help seniors and people with 

disabilities to move around with just a few commands. In order for an autonomous 

vehicle to be safe, relative positioning of surrounding vehicles and objects is important. 

Thus, a robust and accurate positioning technique is required. A vehicle to vehicle com-

munication system is also proposed for these types of vehicles in order to control them 

in different manners and increase the efficiency of traffic flow [1]. Consequently, sig-

nals that can be used for positioning estimation as well as communication are highly 

desirable. 

There are multiple sensors and systems that are used for positioning. The most prev-

alent is GNSS (Global Satellite Navigation System), which has the advantages of global 

availability. However, consumer grade GNSS accuracy is generally on the order of 4 

to 10 meters, and degrades significantly in urban and indoor areas. There have been 

many proposed solutions to improve the accuracy of GNSS. For example, one may 

integrate GNSS with low cost INS (Inertial Navigation System) sensors for use in urban 

areas. However, the accelerometers and gyroscopes in low cost INS tend to drift over 

time and require frequent GNSS updates which are generally not available in urban and 
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indoor environments. Other systems such as LIDAR can also be used to enhance GNSS 

position estimation indoors but require excessive computational resources. 

 

UWB communication signals, through the IEEE 802.15.4-2011 standard, can be 

used to measure ranges while enabling two-way communication [2]. UWB sensors are 

being promoted as additional sensors that can easily enable relative positioning and 

thus mitigate the drawbacks of GNSS in urban and indoor areas [3]. 

 

In this paper, the relative positioning and attitude capabilities of UWB ranges are 

tested and characterized. This will lead to the understanding of the performance of 

UWB in the absence of any other positioning system. The results of this study will point 

out the strengths and weaknesses of UWB ranging in order to appropriately weight an 

UWB solution versus others in a sensor fusion scheme. 

2 Methodology 

The principle idea here is to collect range measurements from UWB radio modules 

placed on each side of each vehicle. The proposed scheme measures 4 different ranges 

between two UWB modules placed on each of two different vehicles. The ranges cor-

respond to the distance between each side of a vehicle to that of the other as shown in 

Fig. 1(a). These ranges are then used to estimate the x and y coordinates and attitude 

(θ) of Vehicle 2 in the body frame of Vehicle 1, as shown in Fig. 1(b). 

 

Fig. 1. Illustration of the Two-Vehicle Scenario; (a) Measurements and (b) Unknowns. 
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Equation (1) shows the relationship between the unknowns and R1. Similarly, one 

can form the relationship between the unknowns (x, y and θ) and all the ranges (R1, R2 

R3, R4) and use them with an estimation algorithm such as least squares. In order to 

investigate the strengths and weaknesses of least squares, a covariance analysis was 

performed to calculate the Dilution of Precision (DOP) around the reference vehicle 
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(Vehicle 1). The DOP results, for the case of two vehicles with the same orientation 

(facing right) are shown in Fig. 2 and clearly show that there is large uncertainty in 

estimating x, y and θ along the y-axis, as well as in estimating θ along the x-axis. This 

is expected since along the y-axis, the four UWB modules are collinear and hence they 

do not yield a unique least squares solution. Furthermore, due to the symmetry of the 

observation geometry, there are also multiple valid solutions, and non-linear least-

squares will only converge to the correct solution if the point of expansion is near-

enough to the correct solution. 

 

Fig. 2. Calculated DOP around Vehicle 1; (a) x-DOP, (b) y-DOP and (c) θ-DOP. 

These areas of uncertainty can be overcome using observations from multiple epochs 

and a Kalman filter with a dynamics model. The Kalman filter will need to introduce 

other state parameters (𝑥 ̇ 𝑦 ̇ 𝑎𝑛𝑑 𝜃̇) in order to predict the position and attitude through 

the dynamics model, represented in discrete time by the transition matrix Φ. The state 

of the vehicle, 𝑥̂ at any given time can be written as in equation (2). The predicted state 

of the vehicle can be calculated by: X̂ =  Φ 𝑥̂, where Φ is defined as in equation 3. 

𝑥̂ =  [𝑥 𝑦 𝜃 𝑥̇ 𝑦̇ 𝜃̇]𝑇                                             (2) 
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                                   (3) 

Note that the x coordinate and y coordinate are predicted with the constant velocity 

model equations   𝑥̂ = 𝑥 + ∆𝑡 𝑥̇ and 𝑦̂ = 𝑦 + ∆𝑡 𝑦̇, while θ is predicted with the first 

order Gauss-Markov model equation 𝜃̂ =  𝜃 + ∆𝑡 𝑒−
𝑡

𝜏 𝜃̇, where τ is can be set to an 

expected time that the vehicle takes to complete a turn and return to a constant heading. 
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3 Field Test 

In order to determine the capabilities of the proposed system, 2 Decawave TREK 1000 

UWB modules [4] were placed on a moving vehicle, as shown in Fig. 3 alongside a 

GPS/INS integrated system. The GPS/INS integrated system is used to provide a refer-

ence trajectory for the moving vehicle (in an outdoor environment) that includes posi-

tion, velocity and attitude angles. Moreover, the GPS/INS integrated system has a sub-

decimeter positioning accuracy, which is adequate for this scenario. To mimic the ref-

erence vehicle, two other UWB modules are placed on a stationary cart, as shown in 

Fig. 4(a).  The moving vehicle then moved around the reference vehicle in a rectangular 

trajectory, as shown in Fig. 4(b), with a semi-major axis of approximately 50 m. This 

trajectory is used for this test because of its feasibility. In other words, for the initial 

test it is much easier to place the stationary cart in the middle of a parking lot than to 

place it in the middle of a busy road for the initial test.  The limited range of the UWB 

modules necessitated that the moving car stay within range of the UWB modules by 

moving in a near circular motion, but it is also limited by the layout of the parking lot 

which is rectangular. It should be noted that the next step will involve two moving 

vehicles driving on city streets that will occur in the near future. The ranges are meas-

ured between the UWB modules with a rate of 3.57 Hz and saved on the computer on 

the stationary vehicle, while the reference trajectory of the moving vehicle was meas-

ured with the tactical grade carrier-phase GPS/INS integrated system. 

 

Fig. 3. Installation of two UWB modules, GPS and INS on a moving vehicle. 

 

 

Fig. 4. : Field test scenario showing (a) the vehicles used and (b) the trajectory of the moving 

vehicle.  
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4 Preliminary Results 

The UWB range measurements exhibit various error sources, such as bias errors, and 

synchronization issues. Consequently, to test the positioning scheme and Kalman filter, 

simulated UWB ranges were calculated from the GPS/INS trajectory and used as input 

measurements to the Kalman filter. The simulated UWB modules positions are calcu-

lating using the GPS position, the fixed known distance between the UWB modules 

antennas and the heading angle acquired by the INS system. These UWB positions are 

then used to calculate the ranges between the UWB modules. These simulated ranges 

are used to test the Kalman filter and verify the proposed algorithm. The Kalman filter 

solution (red crosses) and the GPS/INS trajectory (black stars) are shown in Fig.5. 

These results show small errors in the Kalman filter solution with respect to the 

GPS/INS reference trajectory. These errors are mainly due to increasing distance from 

the reference cart, poor geometry, and a relatively slow update frequency (1 Hz) of the 

GPS/INS system. Fine tuning of the Kalman filter parameters will enhance the position 

estimation and is, therefore, highly recommended. For example, the covariance matrix 

of the measurements, R, could be made a function of the distance between the two 

vehicles in order to mitigate errors due to the increasing distance between the two ve-

hicles. 

In Fig.6 the differences between the x, y and θ estimates from the Kalman filter 

solution and the GPS/INS trajectory solution are shown. Note that the x and y errors of 

the Kalman filter solution, with respect to the GPS/INS solution, are small – the x and 

coordinates of the Kalman filter solution closely track those of the GPS/INS solution. 

However, Fig.6 (c) shows that the θ estimate of the Kalman filter solution does not 

match that of the GPS/INS solution as closely. Note that the θ estimate from the Kalman 

filter solution is underdamped after the moving vehicle has made a U-turn (180˚ change 

in θ). The underdamped effect could be mitigated by adjusting the value of τ in equation 

(3) or by increasing the update rate of the measurements. The UWB modules used have 

a range measurement update rate of at least 4 Hz. Consequently, when actual UWB 

ranges are used in the Kalman filter, the underdamped effect seen in Fig.6 (c) should 

be reduced. 

Fig. 5. Kalman filter solution for the simulated UWB ranges. 
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Fig. 6. Kalman filter solution error (with respect to the reference trajectory) in (a) x, (b) y and 

(c) θ. 

  The results in Fig.6 also verify the expected effect of geometry on position esti-

mation.  Fig.2 shows large DOP values (hence poor geometry) when crossing the x and 

y- axes. This is manifested in Fig.6 (b) and (c) by the difference between the Kalman 

solution y and θ estimates and the GPS/INS trajectory y and θ, while the moving vehicle 

is making a U-turn.  

 The standard deviation of the Kalman filter solution errors, with respect to the 

GPS/INS solution are given in Table 1.  

Table 1 Standard deviation of the Kalman filter solution errors with respect to GPS/INS solu-

tion. 

x 

(m) 

y 

(m) 

θ 

(˚) 
𝑥̇ 

(m/sec) 

𝑦̇ 

(m/sec) 
θ̇ 

(˚/sec) 

0.86 0.53 17 0.7 0.2 11.86 

 

Note that the standard deviation of the x errors is greater than that of the y errors. 

This is not obvious in Fig.6 due to the different vertical axis scales used in Fig.6 (a) 

and (b). However, due to the poorer geometry in the y-direction (as opposed to the x-

direction), one would expect larger y-direction errors for a trajectory that is rotated 90 

degrees from that shown in Fig.4 (b). The error in θ is an average of the θ errors while 

moving in straight line and those while making the U-turns. These errors are expected 

to decrease with the higher measurement update rate available when using actual UWB 

ranges. The errors can be further decreased by changing the kinematic model in the 

Kalman filter. 
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5 Conclusion and Future work 

The Kalman filter, with simulated UWB ranges, yields a 2-D trajectory and heading 

solution with the accuracy quantified in Table 1. The errors in the Kalman filter solution 

can be decreased by fine tuning the Kalman filter parameters as discussed above. The 

next step is to use the actual field measured UWB ranges rather than the ranges 

simul1ated from the GPS/INS trajectory. UWB range measurements have higher data 

rates compared to GPS/INS but are noisier. The higher noise level in UWB ranges is 

expected to increase the errors in the estimated position and attitude. This will require 

a better modelling of the measurement covariance matrix, R, in the Kalman filter. Fur-

thermore, each pair of UWB modules also has a bias in its range measurement that 

should be removed either by prior knowledge of the value (preferable solution) or by 

an adaptive recalibration technique. Finally, UWB measurement are subject to frequent 

outages. This requires the current Kalman filter to be modified to accept one UWB 

range measurement at a time. Such a modification will also solve the UWB measure-

ment synchronization issue. Once this is completed, tests with two moving vehicles will 

be conducted and analyzed. 
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