
End User Development: Verifying Home
Behavior

Alexandre Demeure1, Sybille Caffiau1, Sophie Dupuy-Chessa1, Huong Ta1, and
Lydie DuBousquet1

Univ. Grenoble Alpes, CNRS, Inria, LIG, 38000 Grenoble, France
First.Last@univ-grenoble-alpes.fr

Abstract. End User Programming is a solution to enable inhabitants
to create a smart home adapted to their lifestyle. With this purpose, it is
necessary to design softwares adapted to end-users. This paper presents
why inhabitants may need to evaluate the home behavior when she/he
(1) specifies and (2) maintains and improves her/his programs, and how
existing tools can meet these needs.

Keywords: End User Programming · Evaluation.

1 Introduction

End User Programming enables inhabitants to create a smart home according 
to their lifestyle [12]. A programmed smart home system may be defined as a 
system with an only one program running a set of rules. In order to help an 
end-user to program her/his home, several researches aim at proposing adapted 
programming languages or adapted interfaces (with metaphors [16] or specific 
interaction paradigms [5]). By using these interfaces, inhabitants may defined the 
set of rules (i.e programmed the home system) mainly expressed following the 
Event-Condition-Action paradigm [17]. However, this programming paradigm 
may imply that the programmed behavior does not correspond to the novice 
programmer’s expectations [9,15].

Programming the expected behavior of her/his home is all the more chal-
lenging that the family life often implies to change the routines [7] and thus, to 
change the existing home program [7]. It is very important that some methods 
and softwares are developed to help end-users during the whole system life, i.e. 
to specify, to edit, to maintain the home programmed rules [6].

Considering the home behavior as a concrete system translation of the pro-
grammed rules, we propose to support the specification and the maintainability 
activities through the study of the home behavior. This paper presents why and 
how an inhabitant evaluates the behavior of her/his home in order to program 
her/his rules.

Copyright © 2019 for this paper by its authors. Use permitted under Creative 
Commons License Attribution 4.0 International (CC BY 4.0).



2 A. Demeure et al.

2 Why inhabitants need to verify the smart home
behavior?

When considering any system that will be used by human, the first question to
address is to understand users and their tasks. In our context, an end-user is
an inhabitant who programs to specify the behavior of his/her smart home. As
inhabitants have not (or have few) knowledge on programming, they need tools
to bridge the gap between their ideas and what the system interprets from their
programs.

2.1 Challenge 1: specifying rules

Most of the times, programs are expressed using rules based on Event-Condition-
Actions (ECA) or Trigger-Action (TA) paradigms [15]. These rules aim at au-
tomating tasks, helping to perfom difficult tasks (e.g. closing all shutters during
a storm) or adding features such as remembering to take out the trash. The con-
crete translation of the rules in the household environment is the smart home
behavior.

In such context, several barriers need to be overcome in order to allow non
programmers to program [10]. One of these barriers is that they have to learn
the structure and the language constraints of the programming environment [13].
To ease this learning, End User Development approaches are designed to help
inhabitants to express rules [14].

Specifying rules signifies to translate the expected smart home behavior into
rules. Unfortunately, some studies [9,15] demonstrate that end users may misun-
derstand the semantics of rules and they may create bugs caused by the misun-
derstanding of the temporal paradigms [1]. For this programming step, the in-
habitant needs to confront how the system interprets the rules with what he/she
expected. This confrontation is done by comparing the home behavior with
the expected one. In addition to check the expecting behavior, programming
implies to anticipate unforeseen behaviors. Example 1 illustrates an un-
forseen behavior due to the missing of the undoing behavior (Missing Reversal
Bug in [1]).

Example 1. Nic installed in his home some sensors and actuators that he controls
by using a box. His box also allows him to create rules to program some personal
features. The first rule he programed closes all shutters during the night. The
first evening, all shutters shut down and Bob is very satisfied to be no longer
obliged to travel over his three floors to close all the shutters. But the following
morning, he observe that the shutters are not opened.

In Example 1 the unexpected behavior of the shutters is caused by an un-
forseen case. To improve the behaviour of his home, Nic will add the behavior of
the shutters during the day. However, the modifications may impact the whole
programmed behavior, bringing another challenge, the maintainability challenge
in [6].



End User Development: Verifying Home Behavior 3

2.2 Challenge 2: maintaining and improving rules

For maintaining the set of rules, the comparison between the planned behavior
(expressed in the rules) and the past one may help to check the modification im-
plications. Let’s consider again the example of Nic and the programmed behavior
of his home shutters (Example 1, inspired from [8]).

Example 2. Nic is happy with the programmed behavior of his home shutters.
He does not think about it anymore as it is managed by the system. But a
summer night, while he is in his terrace with some neighbourgs at 10pm, he sees
all shutters closing, including the shutter of the door giving access to his terrace.
He quickly goes home and he opens (with a remote control) this shutter to be able
to access to the terrace. Nic will modify his rules to include a behavior adapted
for the summer period. As he is with friends, he will have to modify the shutter
behavior at least the next day. So this modification requires to remember the
context of this unexpected behavior and the way he programmed the previous
rules.

To correct rules, an end user has to identify the contexts (that occured
in the past) in which the behavior is not the one expected, the pro-
gramming error and to make appropriate modifications. All these steps are new
problems for end users that may cause behavior troubles.

Another problem is related to time: the programmed rules may have been
written and run for a long time. This delay brings difficulties to identify the
conditions of rules activation in term of data and to remind the programmed
rules.

Moreover, even if inhabitants would like to modify rules to take into account
some unexpected cases, they may want to keep the programmed behaviour over
time. Thus, they need to check poperties on the behavior according to
the past. For example, after correcting his rules, Nic wants to check (1) that in
summer nights when he is in the terrace, the shutter of the terrace door stays
opened and (2) that, for all the other time, the shutter behavior is the same that
since the rules run.

3 Existing approaches to verify the programmed behavior

3.1 Approaches relying on users

Most of existing home automation systems enable end users to test the action
part of a rule to verify whether it does correspond to what they expect [8,15]. In
order to test their rules, end users try to reproduce the context in which their
rules have to be tested. Currently, they use different strategies to achieve this.
First, when possible, they can act on sensors to trigger the rules they want to
test. This is easy for a button or a motion sensor but not for a thermometer or a
smoke sensor for instance. A second observed strategy is to define virtual sensors
when the system supports it. Virtual sensors are not binded to any real sensor



4 A. Demeure et al.

and their values can be set by end users (or a program such as a web service).
This is then easier for end users to change sensors values and to see what rules
are triggered. This approach is also explored by [3]. However sometimes these
sensors values are not well known by users. For instance a luminosity sensor
expresses luminosity in lux but this is not easy for end users to mentally map
lux to actual luminosity they perceive or have in mind. As a result, the third
strategy is simply to proceed by ”trials and errors” and to wait for the “next
time” the situation will occur.

A useful functionality, proposed by a couple of boxes (eeDomus, HomeSeer)
[8] is the possibility to navigate between rules and their associated devices or
services. This can be used to preventively check what programs and devices are
going to be impacted by a modification of the system (e.g. removing a sensor,
adding a new program that controls lights, etc.). In the same vain, AppsGate
system [4] proposes a dependency graph that lets users monitor home states
through relations between devices and programs. This aims to help user to re-
member that the state of an entity is modified by more than one program, which
may result result in unexpected behavior due to conflicting commands.

3.2 Automatic and semi-automatic approaches

It is possible to check properties on rules at design time, i.e. when the end user is
specifying them. Cano et al. [2] study the coordination of ECA rules and address
three problems that may occur in programs using ECA paradigm: redundancy,
inconsistency and circularity. Redundancy means that there are two or more
rules in the system which replicate partially or totally a behavior. For instance,
there can exist two rules triggered when the temperature goes below 15 degrees
with the first rule applying actions A and B and the second rule applying action
A. Inconsistency occurs when contradictory actions are sent to devices. This
can occur if multiple rules are activated at the same time, and their execution
order may render different final states of the system. The example 3, extracted
from [2], illustrates inconsistency with three rules.

Example 3.
ON presence IF true DO lights on
ON presence IF true DO TV on
ON TV light IF TV on DO lights off

Last, Circularity occurs when rules get activated continuously without
reaching a stable system state that makes them finish their execution. This
happens when the action of a rule implies the trigger of another rule which in
turn, directly or indirectly, triggers the first rule.

The system proposed by Cano et al. [2] is able to detect the three afore-
mentioned problems. However it is based on a command line interface, which is
adapted for programmers but not for end users.

Manca et al. [11] propose a system that targets end users by offering them
a graphical user interface. This system aims to detect inconsistencies in rules
although it seems to be limited to direct inconsistencies (when two rules can



End User Development: Verifying Home Behavior 5

be triggered at the same time and apply different actions to an actuator). As
mentionned before, it also enables end users to simulate contexts and see how
the system behaves.

Last, Zhang et al. [18] describe the Autotap system which enable users users
to specify desired properties for devices and services. These properties are trans-
lated into linear temporal logic and used to produce compliant TAP rules from
scratch and/or repairs existing ones.

4 Conclusion

Helping end users to define and verify their home behavior is challenging. We
have seen that tools exist to automatically ensure that the end users’ rules are
consistent, avoid redundancies and circularities [2,11]. This is only a first stage
in ensuring that the rules really encode the expected behavior.

Once this stage is reached, the problem is to enable end users to verify how
the smart home behaves. To achieve that, a promising approach is to enable
end users to simulate how the system behave according to simulated sensors and
actuators. This approach is already explored by existing home automation boxes
[8] and academic researches such as Manca et al. [11].

Thus, the existing verification approaches enable end users to compare the
home behavior with the expected one (by simulating) and partially to anticipate
unforeseen behaviors (when they are caused by programming errors such as cir-
cularity). Unfortunately, none approach helps to identify the contexts for which
the behavior may not be the expected one or to check poperties on the behavior.

It is a difficult task for end user to enumerate and define all relevant values
of sensors and actuators for which a rule should be tested, even when some of
these values already occurred in the past. A challenge remains to provide a tool
that help end users in providing theses values.

References

1. Brackenbury, W., Deora, A., Ritchey, J., Vallee, J., He, W., Wang, G., Littman,
M.L., Ur, B.: How users interpret bugs in trigger-action programming. In: Proc.
CHI (2019)

2. Cano, J., Delaval, G., Rutten, E.: Coordination of eca rules by verification and
control. In: International Conference on Coordination Languages and Models. pp.
33–48. Springer (2014)

3. Corcella, L., Manca, M., Paternò, F., Santoro, C.: A visual tool for analysing
iot trigger/action programming. In: International Conference on Human-Centred
Software Engineering. pp. 189–206. Springer (2018)

4. Coutaz, J., Crowley, J.: A first person experience with end-
user development for smart homes. IEEE Pervasive Comput-
ing, special issue on Domestic Pervasive Computing 15(2), 26–
39 (2016). https://doi.org/https://doi.org/10.1109/MPRV.2016.24,
http://ieeexplore.ieee.org/document/7445783/



6 A. Demeure et al.

5. Coutaz, J., Demeure, A., Caffiau, S., Crowley, J.L.: Early lessons from the de-
velopment of spok, an end-user development environment for smart homes. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication. pp. 895–902. ACM (2014)

6. Dautriche, R., Lenoir, C., Demeure, A., Gérard, C., Coutaz, J., Reignier, P.: End-
user-development for smart homes: relevance and challenges. In: Proceedings of
the Workshop” EUD for Supporting Sustainability in Maker Communities”, 4th
International Symposium on End-user Development (IS-EUD). p. 6 (2013)

7. Davidoff, S., Lee, M.K., Yiu, C., Zimmerman, J., Dey, A.K.: Principles of smart
home control. In: International conference on ubiquitous computing. pp. 19–34.
Springer (2006)

8. Demeure, A., Caffiau, S., Elias, E., Roux, C.: Building and using home automation
systems: a field study. In: International Symposium on End User Development. pp.
125–140. Springer (2015)

9. Huang, J., Cakmak, M.: Supporting mental model accuracy in trigger-action pro-
gramming. In: Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing. pp. 215–225. ACM (2015)

10. Ko, A.J., Myers, B.A., Aung, H.H.: Six learning barriers in end-user programming
systems. In: 2004 IEEE Symposium on Visual Languages-Human Centric Com-
puting. pp. 199–206. IEEE (2004)

11. Manca, M., Santoro, C., Corcella, L., et al.: Supporting end-user debugging of
trigger-action rules for iot applications. International Journal of Human-Computer
Studies 123, 56–69 (2019)

12. Mennicken, S., Vermeulen, J., Huang, E.M.: From today’s augmented houses to to-
morrow’s smart homes: new directions for home automation research. In: Proceed-
ings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous
Computing. pp. 105–115. ACM (2014)

13. Pane, John F, R.C.A., Myers, B.A.: Studying the language and structure in
non-programmers’ solutions to programming problems. International Journal of
Human-Computer Studies 54(2), 237–264 (2001)

14. Paternò, F., Santoro, C.: A design space for end user development in the time of
the internet of things. In: New perspectives in end-user development, pp. 43–59.
Springer (2017)

15. Terrier, L., Demeure, A., Caffiau, S.: Ccbl: a language for better supporting context
centered programming in the smart home. Proceedings of the ACM on Human-
Computer Interaction 1(EICS), 14 (2017)

16. Truong, K.N., Huang, E.M., Abowd, G.D.: Camp: A magnetic poetry interface
for end-user programming of capture applications for the home. In: International
Conference on Ubiquitous Computing. pp. 143–160. Springer (2004)

17. Ur, B., McManus, E., Pak Yong Ho, M., Littman, M.L.: Practical trigger-action
programming in the smart home. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. pp. 803–812. ACM (2014)

18. Zhang, L., He, W., Martinez, J., Brackenbury, N., Lu, S., Ur, B.: Autotap: Syn-
thesizing and repairing trigger-action programs using ltl properties


