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Abstract

Supervised classification is one of the main computational tasks of modern
Artificial Intelligence, and it is used to automatically extract an underlying theory
from a set of already classified instances. The available learning schemata are mostly
limited to static instances, in which the temporal component of the information is
absent, neglected, or abstracted into atemporal data, and purely, native temporal
classification is still largely unexplored. In this paper, we propose a temporal rule-
based classifier based on interval temporal logic, that is able to learn a classification
model for multivariate classified (abstracted) time series, and we discuss some
implementation issues.

1 Introduction
Supervised classification, specifically, supervised classification model learning [14, 17] is one of the main
tasks associated with Artificial Intelligence. Roughly, given a data set of instances, each one of which
belongs to a known class, and each instance described by a finite set of attributes, supervised classification
model learning is the task of learning how the values of the attributes determine the class in the context of
the data set. Supervised classification models can be broadly divided into function-based, tree-based, and
rule-based, depending on how the model is represented. Function-based classification models range from
the very simple regression models, to neural network models (see, among others, [8, 11, 10]), and they are
characterized by the fact that the underlying theory is modelled as a function whose output value is used
to determine the class. Tree-based classification models are characterized by describing the underlying
theory as a tree, and they range from deterministic single-tree models, such as ID3 or C4.5, to random
forest models (see, e.g., [3, 18, 19]). Finally, rule-based classification models, which are of interest in this
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work, describe an underlying theory by means of sets of rules, which are not necessarily dependent from
each other, and, in a sense, imitate the human reasoning (see, among others, [12, 13, 16]). Rule-based
classification generalizes tree-based classification, since a tree can be seen as a particular case set of rules,
but not the other way around. Moreover, rule-based models are generally interpretable, that is, they are
models that can be read (and explained) by a human, while function-based models (especially those based
on neural networks) are not.

A common denominator to most classification models is the fact that they are atemporal. Classical
classification problems consider static instances, in which the temporal component is absent, or neglected.
In some cases, the temporal aspects of the information are abstracted (e.g., averaging the fever over all
the observation period of the patients), so that static algorithms can be used. Nevertheless, in some
applications, resorting to static models may not be adequate. Purely temporal instances such as in the
above example can be seen as multivariate time series, that is, collections of points in time in which
the interesting values are recorded: while there are several techniques devoted to single (univariate and
multivariate) time series explanation and prediction, classification models for time series are still in their
infancy. As shown in [20], time series can be abstracted into (interval-based) timelines in a rather general
way, and timelines, in turn, can be described in a very convenient way by means of interval temporal
logics, such as Halpern and Shoham’s logic of Allen’s relations (HS [9]). Static rule-based classification
produces models that can be described by means of propositional logic-like rules; here, we propose an
algorithm that is able to extract an interval temporal logic-like rule-based classifier, and in which finite
interval temporal model checking [15] plays a central role. A tree-based classification model algorithm
based on the same principle has been recently presented in [5], while a deterministic algorithm for HS
association rule extraction from timelines has been proposed in [4].

2 The general context
There are several application domains in which learning a temporal classification model may be useful.
Time information is commonly represented as a time series. The learning paradigm for the temporal
case can be orthogonally partitioned in univariate versus multivariate learning, and reasoning about
one instance versus a collection of instances. Time series forecasting [2] is the problem of predicting
what will happen in the next unseen observation of an instance, given the finite temporal history of one
variable. In the case of temporal multivariate learning with a single instance, one may try to describe the
behaviour of a variable based on the values of other variables at the same time instant and/or previous
ones. WEKA [21], among others, has packages for modelling such scenarios, where the time series are
transformed in some convenient way so that any classical propositional-like model (e.g., multivariate
regression) can be used to solve the problem. The cases when the problem is addressed to a collection of
instances require a different treatment. When the analysis is centered on a single temporal variable, the
typical solution proposed in the literature is to identify/mine frequent patterns across the instances to use
as driving discriminant characteristics.

This work is part of a bigger project where the investigation is devoted to the more general problem
of multiple instances multivariate temporal classification. Given a set of labelled (or classified) instances
from a set of countable classes, the classification problem is to find a function/model that relates each
instance to its class in such a way to minimize the misclassification error. The goal, in our case, is to
treat time in an explicit way within the classification problem, by using the (well-studied) interval-based
temporal logic formalism to describe an interpretable theory which takes full advantage of the temporal
information, where the expressive power of the (interval) language plays a central role; in this sense,
this problem generalizes the classical (static) classification problem (because of the temporal component)
and the classical (temporal) forecasting problem (because it deals with multiple instances). A first step
towards solving the multiple instances multivariate temporal classification problem has been done by
devising a general algorithm to extract timelines (i.e., interval models) from time series, addressed in [20].
Such a representation allows an approach to abstract interval temporal learning, and highlights how the
interval-based approach is, in general, more natural than a point-based one.

Inspired by the fact that interval temporal learning generalizes classical learning, it seems natural to
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Figure 1: Allen’s interval relations and HS modalities.

approach this problem by generalizing classical (propositional-like) algorithms. A preliminary result in
this sense has been presented in [5], in the form of an interval-based generalization of the well-known
decision tree induction algorithm ID3. In this work, we consider the problem of extracting a temporal
classifier composed of a set of implicative rules following the same principle: we start from a temporal
data set of labelled timelines and we extract a temporal classifier (in which the left-hand side of rules is
written in interval temporal logic) by generalizing a classical extraction algorithm.

3 Background
Interval temporal logic. Let D = 〈D,<〉 be a strict linear order. An interval over D is an ordered
pair [x, y], where x, y ∈ D and x < y. We denote the set of all intervals over D with I(D). There are 13
different Allen’s relations between two intervals in a linear order [1]: the six relations RA (adjacent to),
RL (later than), RB (begins), RE (ends), RD (during), and RO (overlaps), depicted in Fig. 1, and their
inverses, for each X ∈ A, where A = {A,L,B,E,D,O}. Halpern and Shoham’s modal logic of temporal
intervals (HS) is defined from a set of propositional letters AP, and by associating a universal modality
[X] and an existential one 〈X〉 to each Allen’s relation RX . Formulas of HS are obtained by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ | [=]ϕ,

where p ∈ AP and X ∈ A. The other Boolean connectives and the logical constants, as well as the
universal modalities [X], can be defined in the standard way. Observe that the operator [=] is redundant
and not included in the original language; it becomes important in the phase of inducting a formula, as we
shall see. The semantics of HS formulas is given in terms of timelines T = 〈I(D), V 〉, where V : AP→ 2I(D)

is a valuation function which assigns to each atomic proposition p ∈ AP the set of intervals V (p) on which
p holds. The truth of a formula ϕ on a given interval [x, y] in an interval model T is defined by structural
induction on formulas as follows:

T, [x, y]  p if [x, y] ∈ V (p), for p ∈ AP;
T, [x, y]  ¬ψ if T, [x, y] 6 ψ;
T, [x, y]  ψ ∨ ξ if T, [x, y]  ψ or T, [x, y]  ξ;
T, [x, y]  〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z]  ψ,
T, [x, y]  〈X〉ψ if there is [w, z] s.t [x, y]RX [w, z] and T, [w, z]  ψ,
T, [x, y]  [=]ψ if T, [x, y]  ψ.

In [20], a general-purpose algorithm has been presented that is able to transform multivariate time series
into timelines (i.e., a temporal data set), which can be used to learn a classification model. Temporal
data sets have been first introduced in [15], where a polynomial time finite model checking algorithm for
formulas of HS has been proposed.
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Learning a rule-based supervised classifier. Given a data set S of m instances I1, . . . , Im, each rep-
resented by n distinct attributes, and each belonging to a predetermined class, the supervised classification
model extraction (or learning) is the task of inducing a model that explains how the values of the attributes
determine the value of the class [14, 17]. A rule-based classification model is characterized by the set of its
rules (e.g., if the patient is over 40, then he/she presents a recurrence). Even if static instances present
numeric attributes, classical classification models are considered propositional. A typical propositional
rule has the form:

ρ : p1 ∧ p2 ∧ . . .→ c, (1)

where A(ρ) = p1 ∧ p2 ∧ . . . is its antecedent, and C(ρ) = c is its consequent, and a rule-based model has
the form:

Γ =


ρ1 : p1

1 ∧ p1
2 ∧ . . . p1

s1
→ c1

ρ2 : p2
1 ∧ p2

2 ∧ . . . p2
s2
→ c2

. . .
ρk : pk1 ∧ pk2 ∧ . . . pksk

→ ck

(2)

Each proposition phl above represents a condition (such as the patient being over 40 years); even if the
symbols cl do not belong to the object language, the rules can be considered as written in propositional
logic (in particular, A(ρ), that is, the antecedent of ρ, is a pure propositional formula). Rules have the
form of logical implications, but they are not interpreted as such: the notion of a rule being satisfied on
a data set S (composed by several instances) is statistical, rather than logical. In particular, given an
instance I ∈ S, we say that a rule ρ holds on I if A(ρ) is satisfied by the values of I, and we say that I is
classified as c by Γ (denoted Γ(I) = c) if, given the rules of Γ that hold on I, and given the firing policy
of Γ, the class c is assigned to I. There are standard ways to evaluate the performances of a supervised
classifier.

4 An Optimization Model for Inducing Temporal Logic Rule-
Based Classifiers

Let us consider a temporal data set T of timelines T1, T2, . . . , Tm. Each timeline is the abstraction of a
multivariate time series with n distinct variables, and it is (binary) classified. We define a generic temporal
classification rule of HS as an object ρ of the type:

ρ : p1 ∧Op(p2 ∧Op(. . .) . . .)→ c, (3)

where each pi is either a propositional letter or the constant >, and each Op is either 〈X〉, [X], 〈X〉, or
[X], where X ∈ A. While there are several possible alternative forms for temporal classification rules, an
object of the type of (3) is immediately interpretable, and allows rules to take the form of (temporal)
patterns, by generalizing (1). For us, a temporal classifier Γ is an object of the type:

Γ =


ρ1 : p1

1 ∧Op(p1
2 ∧Op(. . . ∧ p1

s1
) . . .)→ c1

ρ2 : p2
1 ∧Op(p2

2 ∧Op(. . . ∧ p2
s2

) . . .)→ c2
. . .
ρk : pk1 ∧Op(pk2 ∧Op(. . . ∧ pksk

) . . .)→ ck.

(4)

Now let ū be a vector of decision variables (a candidate solution) that encodes a classifier, and let Γū (resp.,
ūΓ) be the classifier that corresponds to ū (resp., the encoding that corresponds to Γ). The classifier Γū
can be evaluated on the temporal data set T to obtain a measure Per(Γū) of its performance. Moreover,
let Dim(Γ) be a function measuring the total number of symbols used in Γ, md(Γ) a function measuring
the maximum modal depth of any antecedent A(ρ) for any ρ ∈ Γ, and |Γ| a function that measures the
number of rules in Γ. Then, the problem of inducing a temporal rule-based classifier for a given temporal
data set can be seen as the following multi-objective optimization problem (see, e.g. [6]):
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Algorithm 1: Rule-based classifier extraction algorithm.
input :Γ, T ,maxρ, and maxmd.

1 Π← InitialPopulation(maxρ,maxmd,AP) // random population of candidate solutions
2 for i = 1 to maxGen do
3 foreach Γ ∈ Π do
4 Per(Γ)← ComputePerformance(Γ, T ) // using finite model checking [15]
5 Dim(Γ)← ComputeDimension(Γ)
6 end
7 Π′ ← Selection(Π, P er(Γ), Dim(Γ)) // (Pareto) non-dominated solutions
8 Π← NewGeneration(Π′) // new population via evolutionary operators
9 end

10 return Π


max Per(Γū)
min Dim(Γū)
subject to
2 ≤ |Γū| ≤ maxρ
md(Γū) ≤ maxmd,

(5)

where maxρ and maxmd are, respectively, the maximum number of rules in classifier and the maximum
modal depth for each rule. Multi-objective evolutionary algorithms (see, e.g., [7]) are known to be
particularly suitable to perform multi-objective optimization, as they search for multiple optimal solutions
in parallel. Algorithm 1 is the adaptation of the general schemata of a evolutionary algorithm to our case,
in which we abstract over the difference between a solution Γ and its internal representation ūΓ. After
maxGen generations, the procedure stops. The solution of multi-objective optimization is a population of
candidates that tends towards the so-called Pareto front. This means that, in general, we shall have many
possible classifiers. Each classifier is optimal within the part of the search space that has been explored,
that is, during the execution, all classifiers that have been produced with worse performance and same
dimension, as well as all classifiers with greater dimension and same performance have been discarded.
From the returned population, a decision-making strategy must be applied to choose one classifier, and
that may depend from the intended application.

5 Conclusions
Supervised classification is one of the main computational tasks of modern Artificial Intelligence. In this
paper we defined the problem of supervised temporal classification, and then we proposed a solution based
on interval temporal logic, essentially defining the task of temporal classification model induction as an
optimization problem in which finite interval temporal model checking plays a central role in the design of
Algorithm 1.
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