
Experimenting with Functional Features of the
Object Constraint Language?

Daniel Calegari and Marcos Viera

Universidad de la República, Uruguay
{dcalegar,mviera}@fing.edu.uy

Abstract. Although the Object Constraint Language (OCL) was sig-
nificantly influenced by functional programming languages, most of its
interpreters are based on the object-oriented paradigm, providing direct
representation for model-oriented features like inheritance. In previous
works, we introduced a Haskell-based sandbox providing a functional in-
terpretation of OCL invariants. In this paper, we use this sandbox for ex-
perimenting with functional features proposed in the literature for OCL,
showing the benefits of a functional interpretation and its limitations.

Keywords: Object Constraint Language, functional paradigm, Haskell

1 Introduction

The Object Constraint Language (OCL, [1]) However, it also supports for some
functional features, e.g., functions composition, and many authors have pro-
posed the inclusion of other ones, e.g., pattern matching [2], which have a direct
representation in functional programming languages such as Haskell [3].

In previous works [4,5] we introduced a sandbox for experimentation with the
interpretation of OCL invariants, tackling with the functional representation of
model-oriented and functional features in metamodels, models and OCL expre-
ssions. We also introduced Haskell OCL1, an Eclipse OCL-based tool, providing
tool support for experimenting novel approaches from the functional perspective.

In this paper, we discuss advances in the experimentation with functional
features proposed by the scientific community. We focus on OCL as an embed-
ded domain-specific language (EDSL) in Haskell, to open the language to the
functional programming community, to experiment with it. This means that we
describe how OCL interpretation benefits from such an encoding and its corre-
sponding limitations, neither focusing on proposing new features to the language
itself nor on making any comparison at the level of technological support for it.

The rest of this paper is organized as follows. In Section 2 we introduce basic
aspects of the functional paradigm used in the rest of the article, and in Section
3 we briefly present the sandbox and the functional encoding of OCL. In Section

? Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

1 Haskell OCL: https://gitlab.fing.edu.uy/open-coal/haskellOCL

31

4 we use this encoding to evaluate the main advanced features we have identified,
and in Section 5, we complement the analysis with other features and open issues.
Finally, in Section 6 we present some conclusions and ideas for future work.

2 Haskell Preliminaries

Haskell [3] is a purely functional, lazy and static typed programming language.

Algebraic Datatypes introduce new types with a constructor for each element:

data Maybe a = Just a | Nothing

where Maybe a is a type representing the existence of an element of type a (Just
constructor) or nothing (Nothing constructor). The constructors can have pa-
rameters; e.g., Nothing has no parameters while Just receives an element of type
a. We say that a type is polymorphic on the types represented by the variables
occurring on the left-hand side of the definition. Maybe is polymorphic on the
type (a) of its elements, thus it can be instantiated with any type; e.g., inte-
gers (Maybe Int) and characters (Maybe Char). Constructors are used in pattern
matching, e.g., a function stating if a maybe type has something or nothing is:

isJust : : Maybe a −> Bool

isJust Nothing = False

isJust (Just _) = True

Type classes declare predicates over types; e.g., a class Monad, with methods
return and (>>=), being the last one an infix operator:

class Monad m where

return : : a −> m a

(>>=) : : m a −> (a −> m b) −> m b

A type fulfills such predicate if the methods of the class are supported for this
type. Out of the class declaration, the types of the methods include a constraint
stating the membership to the class (i.e., return :: Monad m => a −> m a). When
a function uses a method of a class it inherits its constraints, e.g.,

myReturn : : Monad m => a −> m a

myReturn x = return x

Monads structure computations in terms of values and sequences of (sub) com-
putations that use these values (an imperative-style), allowing to incorporate
side-effects and states without losing the pure nature of the language. Haskell
monads follow the interface provided by the class Monad introduced before. If a
type constructor m is a monad, then a value of type m a is a monadic computa-
tion that returns a value of type a. The function return is used to construct a
computation from a given value. The bind function for monads (>>=) defines
a sequence of computations, given a computation that returns a value of type a

and a function that creates a computation (m b) given a value of such type.

32

3 Functional Interpretation of OCL

Our sandbox provides a Haskell-based interpretation for OCL [4], and an Eclipse
OCL-based tool (Haskell OCL) supporting such an approach [5]. The tool uses
Eclipse OCL for modeling a metamodel together with their corresponding OCL
invariants, and a model in which the invariants must be checked, it generates
a Haskell representation of these elements through a model-to-text transforma-
tion, and runs the Haskell code for checking the OCL invariants, which uses a
predefined and metamodel-independent functional OCL library.

The output Haskell file is available to experiment directly with it, and since
OCL is defined as an EDSL, in this work we focus on the Haskell encoding, its
potential, and limitations. In this context, Eclipse OCL is used only as a reference
of value for the community in terms of coverage of basic language constructions.
In what follows we present the basics of the OCL functional encoding.

3.1 Representation of Metamodels & Models

Each class of a metamodel is represented as a Haskell datatype with a constructor
resulting from the translation of their properties (attributes and associations).
The primitive type of an attribute is represented with its corresponding Haskell
type, and associations are represented with an Int parameter (or list of integers)
identifying the referenced elements. If a Class has subclasses, a field of type
ClassChild is added, defining one constructor (ClassCh) for each subclass (Class)
with its corresponding type. For non-abstract classes this field is wrapped with
a Maybe type. We also define a class ModelElement, which is the superclass of all
the orphan classes, defining a unique identifier other elements can refer to. A
model is thus represented as a list of ModelElement values.

The metamodel depicted in Figure 1 (from [6]) represents teams and team
meetings, such that each meeting has a certain number of participants and a
moderator from the same team. Its functional representation is depicted in Fig-
ure 2. There is a root ModelElement from which a Person (and the other orphans)
inherits. A Person, and its Teammember subclass, are represented as types together
with their properties (associations are represented with lists of integers). Since
not every Person is a team member, its last parameter is wrapped with a Maybe.
There is also an access function to the property name from an element of type
Person or any of its subclasses. The function goes upwards (upCast) in the hier-
archy until it finds a Person, and then returns the value representing the name.

3.2 Representation of OCL Invariants

We defined OCL m a, a Reader monad representing computations in a shared
environment of type m (the model), that returns a value a with respect to the
OCL four-valued logic with the notion of truth, undefinedness and nullity.

type OCL m a = Reader m a

data Val a = Null | Inv | Val a

33

Fig. 1. Team Meeting metamodel

A sequence of computations describes the navigation through properties and
functions, and the shared environment (which is the model itself) can be used
by the computations to look up the elements referred by others. We defined
specialized versions of bind (>>=) for better representing the object navigation
operator (|.|) and the collection navigation operator (|->|). Primitive types
and collection types have their corresponding Haskell representation. Collection
operators were defined in terms of iterate which is almost directly translated
to the fold recursion scheme in Haskell (a monadic version of it), e.g.,

iterate : : (Val b −> Val a −> OCL m (Val b)) −> Val b −> Val [Val a]
−> OCL m (Val b)

iterate f b = pureOCL (foldM f b)

pureOCL f (Val x) = f x

pureOCL _ Inv = oclInv

pureOCL _ Null = oclNull

A function context defines a boolean computation that verifies a list of in-
variants in a given context (self):

context : : (OCLModel m e , Cast m e a)
=> Val a −> [Val a −> OCL m (Val Bool)] −> OCL m (Val Bool)

context self invs = ocl self |.| allInstances |->| forAll (mapInvs invs)

34

data ModelElement = ModelElement Int ModelElementChild

data ModelElementChild = PersonCh Person | . . .
data Person = Person String Int String String (Maybe PersonCh)
data PersonCh = TeammemberCh Teammember

data Teammember = Teammember String [Int] [Int] [Int]
. . .
name : : Cast Model Person_ a => Val a −> OCL Model (Val String)
name a = upCast _Person a>>= pureOCL (\(Person x _ _ _ _) −> return (Val x))

Fig. 2. Haskell representation of the Team Meeting metamodel

In Figure 3 there is an OCL invariant and its Haskell OCL version. It specifies
that a team meeting has to be organized for a whole team.

−− context Teammeeting inv :

−− se l f . participants −> forAll (team = sel f . for)

invariant = context _TeamMeeting [inv]
inv self = ocl self |.| participants |->|

forAll (\a −> ocl a |.| team |==| ocl self |.| for)

Fig. 3. Team Meeting invariant

Some type classes of our library provide functions to navigate through mod-
els, and instances of such classes have to be provided for any data type repre-
senting a model element within a given metamodel. Boilerplate code is defined to
navigate through a model uniformly, e.g., to implement the oclAsType operation.

As summarized in Table 1, our Haskell OCL proposal currently provides
an almost complete representation of OCL for invariants and queries. We take
Eclipse Oxygen OCL 6.3 as a reference and use a semaphore-like notation, where:
green, yellow and red means that the OCL aspect is fully, partially or not sup-
ported, respectively. Eclipse OCL supports parsing of other OCL aspects as
pre/postconditions but it does not provides any interpretation for them since
it is focused on Essential OCL (as we are), which provides the core capabilities
for expressing invariants on models. Our biggest limitation is not the support of
OCL itself, but the support of other constructs not focused (or not commonly
used) on metamodels, e.g., operations on types and association classes.

4 Interpreting Advanced Features

The functional paradigm provides a purely functional, declarative and concurrent
programming environment with static typing and type inference. These features
are strongly connected with the OCL language. In what follows we analyze three
main functional features proposed to be incorporated into OCL.

35

Table 1. OCL compliance (excerpt from [5])

Haskell
OCL

Eclipse
OCL

OCL Constructs & Expressions

context / inv (invariant condition and its context)

init (initial value of an attribute or association role)

derive (derived attribute or association role)

def (new attribute or query operation)

package (package to which OCL expressions belong) a

self (contextual instance)

if-then-else / let-in expressions

Navigation (through attributes, association ends, etc.) b

OCL Standard Library (types and operations)

Boolean/Integer/Real/String types

UnlimitedNatural type

OCLAny type (supertype of all OCL types) c

OCLVoid type (one single instance undefined) d

Tuple type

Collection types (Set, OrderedSet, Bag, and Sequence)

Collection operations e

a Syntactic sugar, can be easily supported.
b Association classes and qualified associations are not supported.
c Not defined, but its operations are implemented for any type; oclIsInState,
oclIsNew, oclType are not supported (only the last one in Eclipse OCL).

d Not defined as a type, but undefined considered as a value during evaluation.
e flatten, sortedBy and collectNested are not supported.

4.1 Functions Everywhere

Functions are first-class citizens in Haskell. It allows higher-order functions tak-
ing other functions as arguments or return types. OCL defines something like
functions (e.g., when defining a let expression) with some restrictions since it
is not possible to define higher-order functions, except in the case of collection
operations. In [7] the authors take these problems and propose to extend OCL to
improve the language abstraction and modularity capabilities, as well as provid-
ing collection operations based on primitive collection operators and recursive
functions. Our sandbox completely addresses this aspect. As an example, collec-
tion operators already use lambda abstractions, e.g., in Figure 3 the invariant
takes a parameter a to apply the expression of the forAll (\a −> ...) . This al-
lows to define functions in terms of other functions, as is the case of reject in
Figure 4, which applies the select operation negating the expression condition
p by using the operator notOCL (the boolean operator also considering invalid
cases). This can be extended for any OCL expression, e.g., those in a let−in
context, as in the first invariant in Figure 4.

36

reject : : (Val a −> OCL m (Val Bool)) −> Val (Collection a)
−> OCL m (Val (Collection a))

reject p = select (notOCL . p)

−− context Meeting inv :

−− let noConflict : Boolean = participants .meetings−>forAll (m | | m<> se l f and

−− m. isConfirmed implies not se l f . noConflict(m))

−− in isConfirmed implies noConflict

invariant = context _Meeting [inv]
inv self = let noConflict = ocl self |.| participants |.| meetings . . .

in ocl self |.| isConfirmed |==>| noConflict

−− context Meeting inv :

−− let priority (Set(Teammember)) : Teammember = . . . ,

−− getModerator(m:Meeting, p:(Set(Teammember) −> Teammember)) : Teammember

−− = p(m. participants)

−− in se l f .moderator = getModerator(self , priority)

invariant = context _Meeting [inv]
inv self = let priority = . . .

getModerator m p = p (m |.| participants)
in ocl self |.| moderator |==| getModerator (ocl self) priority

Fig. 4. Functional abstractions examples

We can also support higher-order functions, e.g., iterate in Section 3, which
is defined as a higher-order function based on foldM. Assume, by abuse of no-
tation, that OCL can express the second invariant in Figure 4, stating that the
moderator is the one with highest priority. In such case, we can define a func-
tion priority for selecting the member with highest priority, and a higher-order
function getModerator that takes a Meeting, a priority function and returns a
Teammember. This representation is nowadays supported in our sandbox.

Even though the use of functions benefits OCL, there are some problematic
aspects. For example, the function flatten, which returns a collection containing
all elements of self recursively flattened, is not easily supported when there is
more than one level of recursion, or there are elements in the collection with a
different type. A recursive definition of this function can be defined with type
flatten :: Collection (Collection a) −> Collection b. However, it has a typ-
ing problem since it is not possible to define a generic relation between types
a and b. To find a solution, we need to add more information within the re-
presentation of metamodels and to generate boilerplate code, which deserves
further analysis. A derivation of this problem is that since the operation collect

is based on flatten, we provided a limited version in which the OCL expression
is applied to every element in the collection but not recursively on collections of
collections.

37

4.2 Lazy Evaluation

Lazy evaluation is Haskell’s default evaluation strategy. Since lazy functions
do not evaluate their arguments until their values are needed, lazy evaluation
for OCL [8] was proposed as a way of optimizing queries, in particular when
dealing with large, or even infinite, models. The authors focused on achieving
three objectives: a performance increase delaying the access to source model ele-
ments when needed, enabling the use of infinite data structures, and improve the
reusability of OCL libraries. Let us say that the third aspect is not only related
to laziness but also functional abstractions and composition, as analyzed before.
The other two aspects truly benefit from a lazy evaluation. As an example, take
the definition of allInstances which implies returning every element of a given
type. Its strict semantics prevent processing infinite models, e.g., in the example
in Figure 5 the first allInstances would never terminate on a state machine
with infinite states. A lazy evaluation semantics allows the query to terminate if
a non-final state containing a self-transition was found (and there is no invalid
evaluation [9]). This is what happens by default in our sandbox (also in Figure
5), even when using monads.

−− State . allInstances()−>select (s | not s .kind = ’ final ’)

−− −>exists (s | s . outgoing−>exists (t | t . target = s))

invariant = context _State [inv]
inv self = ocl self |.| allInstances |->| select (\s −> . . .)

|->| exists |->| (\s −> . . .)

Fig. 5. Lazy evaluation example

Although laziness can improve performance, it also adds memory overhead
since the compiler has to record the expression in the heap in case it is evaluated
later. Haskell provides strictness analysis and explicit strict evaluation features,
which may improve this aspect. Further studies are required in this way.

4.3 Pattern Matching

OCL pattern matching [2] could provide more concise specifications based on the
definition of patterns over object structures instead of the use of repeated naviga-
tion expressions. The authors do not propose full pattern matching but a special
case: typesafe if, which allows reducing the number of oclIsTypeOf/oclAsType

uses, e.g., instead of if self .oclIsTypeOf(Class) then self .oclAsType(Class). f

we can express if c :Class = self then c .f. This notation can be defined as a
new Haskell operator oclIf. Pattern matching is a basic construct in Haskell so
it could be further explored to support more complex expressions. We indeed use
pattern matching, as depicted in Figure 2 for accessing the property name. Unlike
functional pattern matching, in which we access parameters of a constructor by
their position, in OCL we want to access properties through their names.

38

Inspired by the syntax in [2], we show how a more complete and simple
pattern matching extension to OCL can be supported. The purpose here is to
provide better basics for the support of the original proposal, and not to suggest
just another syntax. In Figure 6 we show an example of the use of this extension
and its translation to our library. The semantics is the following: in case the
Person is a Teammember with role “Chief”, then he or she has to be an “Engineer”
older than 23; in the case is not a Teammember or is not a “Chief” but has title
“Engineer”, then he or she has to be older than 22; otherwise, the Person has
to be older than 18. Note that although it is a bit more verbose, the Haskell
structure matches directly with the original OCL.

−− context Person inv :

−− case se l f {
−− (Teammeber) [age = a, role = ”Chief”, t i t l e = t] −> (a > 23) | | t == ”Engineer”;

−− (Person)[age = a, t i t l e = ”Engineer”] −> a > 22;

−− (Person)[age = a] −> a > 18

−− }

invariant = context _Person [inv]
inv self = ocl self |.|

((caseOCL (_Teammember <::> age <:> role <=> ”Chief” <:> title <:> NilP)
(\(a , (t , ())) −> (oclVal a |>| oclInt 23) ||| |

(oclVal t |==| oclVal ”Engineer”))) <||>

(caseOCL (_Person <::> age <:> title <=> ”Engineer” <:> NilP)
(\(a , ()) −> oclVal a |>| oclInt 22)) <||>

(caseOCL (_Person <::> age <:> NilP)
(\(a , ()) −> oclVal a |>| oclInt 18)))

Fig. 6. Pattern Matching example

The implementation of the whole pattern matching mechanism is very simple.
We first define a couple of datatypes to represent patterns:

data Pattern m e p as where

Pattern : : Val p −> PList m e p as −> Pattern m e p as

data PList m e p as where

NilP : : PList m e p ()
VarP : : (Cast m e p => Val e −> OCL m (Val a)) −> PList m e p as

−> PList m e p (a ,as)
LitP : : Eq a => (Cast m e p => Val e −> OCL m (Val a)) −> a

−> PList m e p as −> PList m e p as

The combinators <::>, <:> and <=> used in Figure 6 are just smart constructors
of such types. For example, the first pattern is equivalent to:

(Pattern _Teammember (VarP age (LitP role ”Chief” (VarP title NilP))))

39

A pattern consists of a reference to a class (Val p) and a list of sub-patterns
referring to the attributes of the class. A sub-pattern can bind the matched
element to a variable (VarP) or compare it to a literal (LitP). We could have
defined sub-patterns recursively as patterns, but for simplicity we decided to
have only two-level patterns. Notice that the as index of the types is increased
every time a VarP is included, constructing a nested cartesian product, that ends
with () at NilP (e.g., the type as for our example pattern is (Int ,(String ,()))).
The first parameter of both VarP and LitP is a function that knows how to extract
some information from an element representing a class e that can be casted to the
referenced class p. Thus, age, role and title in Figure 6 are attribute accessor
functions defined in the same way we defined name in Figure 2.

The function caseOCL implements a case branch. It takes a pattern p, a func-
tion f that takes the values bound by the pattern and returns an OCL computa-
tion (with a value of type Val a), and the value self to inspect, and returns the
OCL computation. It basically evaluates the pattern to produce the cartesian
product needed to apply to the function f. If the pattern fails it results in Inv.

caseOCL : : Cast m e p => Pattern m e p as −> (as −> OCL m (Val a))
−> Val e −> OCL m (Val a)

caseOCL p f self = evalPattern p self>>= pureOCL f

Pattern evaluation needs to downcast the given element to the class the
pattern refers. If it succeed, we go through the list of sub-patterns, applying the
access function to the elements and constructing the cartesian product in the
case of VarP, or checking the match in the case of LitP (returning Inv if it fails).

evalPattern : : Cast m e p => Pattern m e p as −> Val e −> OCL m (Val as)
evalPattern (Pattern p plist) e = do p ’ <− downCast p e

case p ’ of Inv −> return Inv

_ −> evalPList plist e

evalPList : : Cast m e p => PList m e p as −> Val e −> OCL m (Val as)
evalPList NilP _ = return $ Val ()
evalPList (VarP f ps) e = f e>>= pureOCL (\x −> evalPList ps e>>=

pureOCL (\xs −> return (Val (x ,xs))))
evalPList (LitP f l ps) e = f e>>= pureOCL (\x −> if x == l

then evalPList ps e else return Inv)

5 Other OCL Features

Packages and Package Invariants. Haskell already provides modules for
packaging definitions and the use of qualified names. In Figure 7 there is a mod-
ule UML defining the metamodel and there is a qualified import for expressing
invariants in another module OCL. Moreover, in [10] the authors propose to de-
fine invariants for packages, e.g., package UML inv : forAll(m in Meeting | ...) ,
avoiding the need of expressing the OCL expression for every element of some
type, e.g., context Meeting inv : Meeting .allInstances()−>forAll (...) . As ex-
pressed in Figure 7, it does not change the way an expression is defined.

40

Generic Collection Types. Haskell functions can be polymorphic based on
type variables. As proposed in [10], our OCL collection functions are all polymor-
phic, and based on polymorphic functions, e.g., foldM used for defining iterate.
As depicted in Figure 7, we have defined a polymorphic Collection type with
four constructors (i.e., Bag, Set, Sequence and OrderedSet), and collection op-
erators over this type. Their behavior is determined depending on the type of
collection using pattern matching, e.g., select. As analyzed in Section 4.1, many
problems arise from hierarchical typing.

Safe Navigation. The existence of the null object is troublesome since it intro-
duces potential navigation failures. Safe navigation is proposed in [11] through
the safe object navigation operator ? and the safe collection navigation operator
?−>. These operators ensure that the result is the expected value or null; no in-
valid failure. In our sandbox, safe navigation can be supported by the definition
of new operators, e.g., (|?.|)) in Figure 7 (pureOCL is defined in Section 3.2).

−− Packages and Package Invariants

module UML where data Meeting = . . .

module OCL where import qualified UML as UML

context UML ._Meeting [inv]
inv self = ocl self |.| allInstances |->| forAll . . .

−− Generic Collection Types

data Collection a = Bag [Val a] | Sequence [Val a] | . . .

select : : (Val a −> OCL m (Val Bool)) −> Val (Collection a)
−> OCL m (Val (Collection a))

select p (Val (Bag xs)) = . . .

−− Safe Navigation

(|?.|) : : OCL m (Val a) −> (Val a −> OCL m (Val b)) −> OCL m (Val b)
x |?.| f = x>>= pureOCL f

Fig. 7. Other OCL Features

Exploiting Monads. As introduced in Section 3.2, our sandbox uses a Reader

monad which “silently” passes a given model through the sequences of compu-
tations. The context definition captures the boolean result of the evaluation of
an invariant. However, the monad do not depends on a concrete value type, thus
monadic computations allow any return type, not just booleans, e.g., iterate

(also in Section 3.2) is defined for a collection containing any type. This lifts
OCL to a navigation language, which could be useful for supporting operations
and model transformations, among other uses.

41

By exploiting monads, we can get other interesting features. In [12] the au-
thors address several shortcomings of the OCL language (many tools already
provide language extensions for dealing with them, e.g., Eclipse OCL), such as
it does not support specifying user messages and there is no support for repair-
ing inconsistencies in a model. We can use an Error monad, which represents
computations which may fail or throw exceptions, as presented in Figure 8. In
such example, we use the ErrorT monad transformer that adds error handling
to another monad (our original Reader monad) and allows throwing errors on
any computation, e.g., when an invariant fails. It could also be possible to use
a State monad for consuming a state (e.g., a given model) and produce both a
result (e.g., an invariant check) and an updated state (e.g., a repaired model). In
summary, the use of combined monads allows adding effects to OCL expressions
in a modular way.

type OCLError m a = ErrorT String (OCL m a)

invariant1 = context _Meeting [inv2]
inv2 self = do res <− ocl self |.| participants . . .

if res |==| oclVal True

then return res

else throwError ”There was an error”

Fig. 8. Using the ErrorT monad transformer

Operations & Pre/postconditions. The navigation language we provide
can be used to the derivation of properties in terms of other properties or the
specification of the body of an operation that does not change the state of the
system. In Figure 9 there is an example of a derived property (size) whose
value (the size of the team) is computed when needed, and the body of an
operation (getMeetingTitles) which returns the titles of the meetings that a team
member attends. Both aspects can be currently supported as any other property
introduced in Section 3. Pre/postconditions support rely on the same settings
but with some additional features. In particular, we must consider a pair or
pre and post models where the pre/postconditions of an operation specification
must hold. As an example, take the pre/postconditions of the operation shift in
Figure 9. Supporting preconditions is straightforward, since they are invariants
that must hold in the pre model. In the case of a postcondition, it is also an
invariant check, but we need to define a new context in which we can shift from
one model to another by using a function atPre in order to get the value of any
expression marked with @pre from the pre model. The example in this last case
is just explanatory since it requires further development.

6 Conclusions & Future Work

In this paper, we discussed advances in the experimentation with functional
features proposed for OCL and provided a different perspective on the interpre-
tation of OCL as a Haskell EDSL.

42

−− context Team: : size : Integer

−− derive : members−>size ()

size : : Cast Model Team_ a => Val a −> OCL Model (Val Int)
size self = (ocl self) |.| members |->| size

−− context Teammember: : getMeetingTitles () :Bag(String)

−− body: meetings−>collect (t i t l e)

getMeetingTitles : : Cast Model Teammember_ a => Val a

−> OCL Model (Val (Bag String))
getMeetingTitles self = (ocl self) |.| meetings |->|

collect(\m −> ((ocl m) |.| title))

−− context Meeting : : shift (d: Integer)

−− pre : se l f . isConfirmed = false and d > 0

−− post : start = start@pre + d and end = end@pre + d

context _Teammeeting [inv]
inv self d = (((ocl self) |.| isConfirmed) |==| (oclVal False)) |&&|

((oclInt d) |>| (oclInt 0))

post self d = (((ocl self) |.| start)) |==|

(ocl self) |.| atPre start) |+| (oclInt d)) |&&|

(((ocl self) |.| end)) |==|

(ocl self) |.| atPre end) |+| (oclInt d))

Fig. 9. Operations & Pre/postconditions

Hierarchical typing and identities introduce the main mismatch problems.
Once some functional boilerplate is generated to take care of this, the resulting
expressions and their interpretation are more modular, abstract and extensi-
ble. Nevertheless, there are still some challenges, e.g., the definition of recursive
multi-typed collection operators and reflection capabilities, as with other open
issues, as discussed in Section 5, that require further studies.

To our knowledge, the most related work to ours is Sigma [13], an OCL EDSL
implemented in Scala. Since Scala is both functional and object-oriented, their
embedding does not have to deal with the hierarchy representation mismatch
problem, and its syntax looks closer to OCL than ours. However, Sigma OCL
expressions are not effect-free, and formal reasoning is much more difficult than
in our purely functional approach. Another shallow embedding of OCL, in this
case into Isabelle/HOL, is presented in [14]. It is intended to be a proposal for the
standardization process of OCL 2.5, and it deserves further analysis to examine
the relationship between our definitions and it.

Considering that in some cases OCL could be benefited from the introduction
of some kind of controlled side effects, e.g., for expressing error messages, an

43

interesting research line could be to analyze how to define a modular effects
mechanism for OCL, e.g., inspired by monads and monad transformers.

As a complementary perspective, we are currently addressing a benchmark
comparison between Haskell OCL and Eclipse OCL, dealing with performance
concerns (time and memory) on some (larger) real-world examples.

Acknowledgements

This work was partially funded by Fondo Carlos Vaz Ferreira 2017, Dirección de
Innovación, Ciencia y Tecnoloǵıa (DICYT), MEC, Uruguay.

References

1. OMG: Object Constraint Language. Spec. V2.4, Object Management Group (2014)
2. Clark, T.: OCL pattern matching. In: Proc. OCL Workshop. Volume 1092 of

CEUR Workshop Proceedings., CEUR-WS.org (2013) 33–42
3. Jones, S.P., ed.: Haskell 98 Language and Libraries: The Revised Report.

http://haskell.org/ (September 2002)
4. Calegari, D., Viera, M.: On the functional interpretation of OCL. In: Proc. of

the 16th Intl. Workshop on OCL and Textual Modelling. Volume 1756 of CEUR
Workshop Proceedings., CEUR-WS.org (2016) 33–48

5. Sintas, G., Lutz, L.V., Calegari, D., Viera, M.: Model-driven development of an
interpreter for the object constraint language. In: XLIV Latin American Computer
Conference CLEI, IEEE (2018) 120–128

6. Demuth, B.: OCL (Object Constraint Language) by example. Lecture at MINE
Summer School (2009)

7. Brucker, A.D., Clark, T., Dania, C., Georg, G., Gogolla, M., Jouault, F., Teniente,
E., Wolff, B.: Panel discussion: Proposals for improving OCL. In: Proc. of 14th
Intl. Workshop on OCL and Textual Modelling. Volume 1285 of CEUR Workshop
Proceedings., CEUR-WS.org (2014) 83–99

8. Tisi, M., Douence, R., Wagelaar, D.: Lazy evaluation for OCL. In: Proc. 15th
Intl. Workshop on OCL and Textual Modeling. Volume 1512 of CEUR Workshop
Proceedings., CEUR-WS.org (2015) 46–61

9. Willink, E.D.: Deterministic lazy mutable OCL collections. In: Proc. STAF 2017
Collocated Workshops. Volume 10748 of LNCS., Springer (2018) 340–355

10. Willink, E.: Ocl 2.5 plans. Presentation in the 14th Intl. Workshop on OCL and
Textual Modelling, 2014.

11. Willink, E.D.: Safe navigation in OCL. In: Proc. 15th Intl. Workshop on OCL and
Textual Modeling. Volume 1512 of CEUR Workshop Proceedings., CEUR-WS.org
(2015) 81–88

12. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the evolution of OCL for capturing
structural constraints in modelling languages. In: Rigorous Methods for Software
Construction and Analysis. Volume 5115 of LNCS., Springer (2009) 204–218

13. Krikava, F., Collet, P.: On the use of an internal DSL for enriching EMF models.
In: Proc. of 12th Workshop on OCL and Textual Modelling, ACM (2012) 25–30

14. Brucker, A.D., Tuong, F., Wolff, B.: Featherweight OCL: A proposal for a machine-
checked formal semantics for OCL 2.5. Archive of Formal Proofs 2014 (2014)

44

