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Abstract. Interval pattern concepts are a particular case of pattern
structures. They can be used to clusterize rows of a numerical formal
context (data matrix): two rows are close to each other if their entries
at the corresponding positions fall within a given interval.
The problem of mining interval pattern concepts has much in common
with the known problem related to computational geometry: given a
finite set of points in the Euclidean space, position a box of a given size
in such a way that it encloses as many points as possible. This problem
and its variations have been thoroughly studied in the case of a plane;
however, the authors are not aware of the existence of algorithms which in
a reasonable time produce an exact solution in the space of an arbitrary
dimension.
There exists an approximate greedy algorithm for solving this problem.
It produces a solution with time which is linear in the number of points
and polynomial in dimension. We apply a clustering approach based on
that algorithm to the gene expression table from the dataset “The Cancer
Cell Line Encyclopedia”. The resulting partition well agrees with a priori
known biological factors.
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1 Introduction

In our days researchers frequently need to investigate various biological and
medical data represented as numerical contexts (data tables). Rows of tables
correspond to objects; columns correspond to attributes. It is often necessary
to find clusters that are composed of objects featuring similar attributes. One
of the most convenient tools that can be used for clustering this kind of data is
Formal Concept Analysis.
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Formal concept analysis (FCA) is a data analysis method based on applied
lattice theory and order theory. Within the framework of this theory a formal
concept is defined as a pair (extent, intent) obeying the Galois connection (see
the monograph [1] by B. Ganter and R. Wille).

One of the variations of FCA is known as the theory of pattern structures,
which was elaborated by B. Ganter and S. Kuznetsov in [2]. An important par-
ticular case of pattern structures is interval pattern structure with the operation
of interval intersection, which allows one to apply cluster analysis to rows of nu-
merical contexts [3]. In this case similarity means that all the differences between
the values of the corresponding attributes fall into given intervals.

It is easily seen that the problem of detecting similar objects can be refor-
mulated in geometrical terms, namely, as the problem of optimal positioning of
a d-dimensional box with given edge lengths for the set P of points, i.e. finding
a position of the box that maximizes the number of points of the set P enclosed
by the box (here d ∈ N is the number of attributes in the numerical context
considered, P is the set generated by the rows of the numerical context).

In practice, biomedical data often involve thousands of entries, and each
entry is described by hundreds of attributes. The existing algorithms that solve
the problem of finding an optimal position of a box do not allow one to obtain
an exact solution for high-dimensional data within a reasonable time. In [4]
the authors introduced a fast approximate greedy algorithm for solving this
problem and applied the corresponding clustering approach to the dataset of
tactile images registered by the Medical Tactile Endosurgical Complex (MTEC,
[5]). The experiment results demonstrated significant advantage of the proposed
algorithm over the conventional k-means method in clustering quality.

In this paper we apply this clustering algorithm to the dataset “The Cancer
Cell Line Encyclopedia” [6]. This dataset includes an expression table for about
20000 genes in 917 cancer cell lines. The cell lines were derived from tissues of
23 different organs. The aim of the study is to check if cancers from close organs
have close gene expression values.

The rest of the paper is organised as follows. In Section 2 we introduce defi-
nitions from the formal concepts theory. In Section 3 we overview the clustering
algorithm from [4]. In Section 4 we describe the procedure and present the re-
sults of application of the algorithm to the gene expression data, and in Section
5 we make concluding remarks.

2 Main Definitions

In this section we briefly recall the main definitions of the theory of formal
concepts and give a geometrical interpretation of the problem of finding an
interval pattern concept of maximum extent size.

Definition 1. A semilattice operation on the partially ordered set (M,≤) is a
binary operation u : M ×M that features the following properties for a certain
e ∈M and any elements x, y, z ∈M :



– x u x = x (idempotency);
– x u y = y u x (commutativity);
– (x u y) u z = x u (y u z) (associativity);
– e u x = e.

Definition 2. Let (P,≤P ) and (Q,≤Q) be partially ordered sets. A Galois con-
nection between these sets is a pair of maps ϕ : P → Q and ψ : Q→ P (each of
them is referred to as a Galois operator) such that the following relations hold
for any p1, p2 ∈ P and q1, q2 ∈ Q:

– p1 ≤P p2 ⇒ ϕ(p1) ≥Q ϕ(p2) (anti-isotone property);
– q1 ≤Q q2 ⇒ ψ(q1) ≥P ψ(q2) (anti-isotone property);
– p1 ≤P ψ(ϕ(p1)) and q1 ≤Q ϕ(ψ(q1)) (isotone property).

Applying the Galois operator twice, namely, ψ(ϕ(p)) and ϕ(ψ(q)), defines a
closure operator.

Definition 3. A closure operator (·) on M is a map that assigns a closure
X ⊆M to each subset X ⊆M under the following conditions:

– X ≤ Y ⇒ X ≤ Y (monotony);
– X ≤ X (extensity);

– X = X (idempotency).

Definition 4. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a meet-semilattice of potential object descriptions, and δ : G→
D is a function that associates descriptions with objects.

The Galois connection between the subsets of the set of objects and the set of
descriptions for the pattern structure (G, (D,u), δ) is defined as follows:

A� := ug∈Aδ(g), where A ⊆ G,
d� := {g ∈ G | d v δ(g)}, where A ⊆ G.

Definition 5. A pattern concept of the pattern structure (G, (D,u), δ) is a pair
(A, d), where A ⊆ G is a subset of the set of objects and d ∈ D is one of the
descriptions in the semilattice, such that A� = d and d� = A; A is called the
pattern extent of the concept and d is the pattern intent.

A particular case of a pattern concept is the interval pattern concept. The
set D consists of rows of a numerical context which are treated as tuples of
intervals of zero length. An interval pattern concept is a pair (A, d), where A is
a subset of the set of objects and d is a tuple of intervals with ends determined
by the smallest and the largest values of the corresponding component in the
descriptions of all objects in A.

Since interval pattern concepts are determined by objects that have similarly
“distributed” attributes, these concepts are convenitent to use in data clustering.
The interval width can be either the same for all components (in such case it is



denoted by δ), or different for different components (in such case the widths are
denoted by δ1, δ2, . . . , δd).

Let P be a set of n points in Rd (d ∈ N), δ1, δ2, . . . , δd be positive real
numbers.

Definition 6. A d-orthotope (also called a box) with center x = (x1, . . . , xd) ∈
Rd and edge lengths δ1, δ2, . . . , δd is the Cartesian product of the intervals[

x1 −
δ1
2
, x1 +

δ1
2

]
× . . .×

[
xd −

δd
2
, xd +

δd
2

]
.

It can be easily seen that the problem of identification of a maximum interval
concept can be reformulated in terms of finding an optimal position of the box
with the edge lengths δ1, δ2, . . . , δd, that is, maximizing the number of points
of the set P enclosed by the box. This formulation can be generalized to the
problem of finding an optimal position of a ball in an arbitrary metric space,
since any box can be treated as a ball in the stretched L∞ metric in which
the distance ρ(x, y) between the points x = (x1, . . . , xd) and y = (y1, . . . , yd) is
defined as

ρ(x, y) = max
1≤i≤d

δi|xi − yi|.

3 The Greedy Clustering Algorithm Based on Interval
Pattern Concepts

In this section we briefly overview the greedy clustering algorithm which was
introduced in [4]. Given the set P = {pi}ni=1 ⊂ Rd, the algorithm splits it
into mutually disjoint clusters C1, . . . , Ck. The splitting procedure is based on
optimal box positioning and uses a standard greedy approach. Namely, at each
step an optimal positionDi of the box for the set P\(C1, . . . , Ci−1) is determined,
and Ci is assigned to be equal to (P \ (C1, . . . , Ci−1))

⋂
Di. In order to avoid

producing a big number of small clusters consisting of outliers, the algorithm
uses a restriction on the number of points in the resulting clusters — they must
include at least cmin objects. With this restriction some points can be considered
unclustered.

The clustering procedure uses the approximate greedy iterative algorithm
for solving the problem of an optimal box positioning. The parameters of that
algorithm are the box edge lengths δ1, δ2, . . . , δd, the positive real numbers
s, smin, λ < 1 and the function f : N × N → N. The parameters s, smin,
and λ regulate the duration of one iteration, while the function f returns the
number of iterations for the given values n and d. Greater number of iterations
and greater duration of each iteration provide better approximation.

Now we will briefly describe the greedy algorithm for finding an approxi-
mately optimal position of a box. After a short preprocessing procedure the
box with the edge lengths δ1, δ2, . . . , δd is transformed into the d-dimensional
unit cube, and the algorithm locates the base unit cube, i.e. the optimal unit



cube with integer vertice coordinates. The main idea of the algorithm consists
in constructing f(n, d) sequences of unit cubes in such a way that each sequence
starts from a random point in the base unit cube and satisfies the condition that
the next cube contains more points than the previous one. After that the algo-
rithm returns a locally optimal cube C. Each sequence is constucted iteratively.
Suppose that m cubes from a sequence are already constructed. There are two
possible cases.

1. If the current cube can be translated with the current step by one of the
axes (the initial step size is equal to s) with an increase in the number of
enclosed points, then the current cube is moved to this position.

2. Otherwise, the current step size is decreased by a factor of λ < 1. If the step
size threshold sminis reached then the procedure is terminated.

Under additional technical restrictions the authors of [4] proved the following
precision and complexity bounds.

Theorem 1. Let Dalg be an optimal cube produced by the algorithm and Dopt

be a globally optimal cube. Then

1

2d
≤ |Dalg

⋂
P |

|Dopt

⋂
P |
≤ 1

and this estimate is sharp.

Theorem 2. The algorithm for finding an approximately optimal position of the
box has

O

(
dn log(n) +

d3n1−
1
d

smin
f(n, d)

)
worst-case time complexity and O(dn) space complexity.

Theorem 3. The clustering algorithm has

O

((
dn log(n) +

d3n1−
1
d

smin
f(n, d)

)
· n

cmin

)

worst-case time complexity and O(dn) space complexity.

4 Applying the Clustering Algorithm to “The Cancer
Cell Line Encyclopedia”

We consulted biologists and selected 432 columns of the expression table asso-
ciated with genes encoding receptors, channels and transcription factors. First,
we applied the clustering algorithm to the whole table. Thus, in our notation
we have n equal to 917 and d equal to 432. For tuning algorithm parameters
we used the following procedure. Let D denote the maximal pairwise distance
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Fig. 1. Dendrogram of the hierarchial clustering of features.
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Fig. 2. Plot of the first two principal components for the clusters; 29 outlying samples
are removed from this figure.
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20 21 33 1 2 0

69 266 61 8 0 0

252 41 36 1 0 14

Fig. 3. Mutual arrangment of the clusters and organ groups. The number at the inter-
section of the ith row and the jth column indicates the number of samples which fall
into both Group i and Cluster j; 29 outlying samples are excluded from consideration.

between the points considered. By the Pythagoras theorem, all points can be
placed in a cube with edge length D

√
d. Then, a simple grid search approach on

the interval
(

0, D
√
d
)

was utilized for finding an acceptable cube edge length.

The remaining parameters were manually tuned in order to reach acceptable
(accuracy) / (running time) ratio.

We seleceted the cube edge length equal to 6.7 (i.e. δ1 = δ2 = ... = δ432 =
6.7); cmin, s, smin and λ were set equal to 10, 0.5, 0.3, 0.9, respectively, and the
function f(n, d) was taken as [log(dn)], where [x] denotes the integer part of x.
Despite an acceptable run time (several minutes) the results were unsatisfactory:
the output of the algorithm included one huge 390-element cluster, two medium-
sized 77- and 69-element clusters, and the remaining approximately optimal
cubes contained less than 10 points each. This means that more than 40% of
samples (381 out of 917) actually were not clusterized. Such behavior was the
result of strictness of the relation “a point lies in a box” which means that each
coordinate of a point must fall into a fixed range. Under this restriction, even one
outlying coordinate of a point knocks it out of a cube. In high dimensional spaces
single coordinate outliers are quite probable and inevitable, so before using the
clustering algorithm it is reasonable to apply some dimension reduction and
smoothing technique.

We applied Ward’s method of hierarchial clustering to data features (R func-
tion hclust from the package stats [7] was used). The dendrogram produced
(Fig. 1) was cut at height 55, which corresponds to 10 clusters. Then the expres-



sion values in the clusters were averaged. The new feature space had dimension
d equal to 10. The greedy clustering algorithm was run on the dataset with re-
duced dimension with the cube length equal to 3; the other parameter values
were left unchanged. The number of outliers essentially decreased after moving
to the new agglomerated feature space — their quantity varied in the range be-
tween 25 and 35. The resulting partition consisted of 6 groups (see Fig. 2) and
had an interesting biological interpretation. Namely, we calculated the number
of samples in all intersections of clusters and organs. Based on this cardinali-
ties we concluded that the clusters obtained were highly correlated with organ
groups (see Fig. 3):

– Group 1: haematopoietic and lymphoid tissue, liver, skin, central nervous
system, bone, soft tissue, pleura;

– Group 2: salivary gland, upper aerodigestive tract, oesophagus, biliary tract,
stomach, pancreas, small intestine, large intestine, breast, thyroid,
endometrium, urinary tract, lung (non-small cell cancer);

– Group 3: Kidney, ovary, prostate;
– Group 4: Autonomic ganglia and lung (small cell cancer).

It can be seen that major organ systems fall into different groups. Namely,
Group 1 contains almost all non-solid organs, Group 2 contains organs from di-
gestive system, Group 3 contains organs from genitourinary system, and Group
4 contains organs from autonomic nervous system and respiratory system. How-
ever Groups 2 and 3 seem to be dependent: Group 2 also contains some organs
from genitourinary system. Thus the clusters differ by the organ systems they
contain. Note that Figures 2 and 3 give ground to merge Cluster 6 with Cluster
1 and Cluster 5 with Cluster 4. The quality of the clusters can be addition-
ally illustrated by more subtle arguments. For example, separation of small and
non-small cell lung cancers seems to be reasonable, since there are some recep-
tor coding genes which are differently expressed in these cancer types [8]. Note
also that small cell lung cancer appear in the same cluster with the autonomic
ganglia cancer (neuroblastoma), since their molecular mechanisms include some
number of the same receptors [9].

5 Conclusions

In this paper we tested the applicability of the greedy clustering algorithm based
on interval pattern concepts from the paper [4] to high-dimensional biomedical
data. We showed that the clusters produced by the algorithm applied to “The
Cancer Cell Line Encyclopedia” dataset were highly correlated with different
organ groups and sophisticated molecular mechanismes of different cancer types.
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