=Paper= {{Paper |id=Vol-2533/paper14 |storemode=property |title=The Testing of Pseudorandom Sequences using Multidimensional Statistics |pdfUrl=https://ceur-ws.org/Vol-2533/paper14.pdf |volume=Vol-2533 |authors=Svitlana Popereshnyak,Georgi P. Dimitrov |dblpUrl=https://dblp.org/rec/conf/dcsmart/PopereshnyakD19 }} ==The Testing of Pseudorandom Sequences using Multidimensional Statistics== https://ceur-ws.org/Vol-2533/paper14.pdf
          The Testing of Pseudorandom Sequences using
                   Multidimensional Statistics

    Svitlana Popereshnyak 1[0000-0002-0531-9809] and Georgi P. Dimitrov 2[0000-0001-5064-3168]
1 Taras Shevchenko National University of Kyiv, 24, Bohdana Havrylyshyna str., Kyiv, 04116,

                                            Ukraine
                               spopereshnyak@gmail.com
    2 University of Library Studies and Information Technologies, 119, Tsarigradsko Shose,

                                         Sofia, Bulgaria
                              geo.p.dimitrov@gmail.com



        Abstract. The available approaches to testing pseudorandom sequences show
        low flexibility and versatility in the means of finding hidden patterns in the da-
        ta. To solve this problem, it is suggested to use algorithms based on multidi-
        mensional statistics. The paper proposed a new approach for testing pseudoran-
        dom sequences, obtained an explicit form of the joint distribution of numbers of
        2-chains and numbers of 3-chains of various options random bit sequence of a
        given small length. Examples, tables, diagrams that can be used to test for ran-
        domness of the location of zeros and ones in the bit section are presented. In fu-
        ture as a result an information system will be created that will allow analyzing
        the pseudorandom sequence of a small length and choosing a quality pseu-
        dorandom sequence for use in a particular subject area.

        Keywords: Algorithms, multidimensional Statistics, Random Sequence, s-
        chains, Cryptography, Pseudorandom Sequence, Statistical Testing.


1       Introduction
Random sequences have found the widest application from the gaming computer
industry to mathematical modeling and cryptology.
   We list some areas of their usage: modeling, cryptography and information securi-
ty, decision making in automated expert systems, optimization of functional depend-
encies, fun and games.
   There are various approaches to the formal definition of the term “randomness”
based on the concepts of computability and algorithmic complexity [1-2].
   By implementing some algorithm, software generators produce numbers (although
not obvious) depending on the set of previous values, so the received numerical se-
quences are not truly random and are called pseudo-random sequences (PRS). At the
moment, more than a thousand software PRS generators are known, which differ in
algorithms and values of parameters. Statistical properties are significantly different
from the number sequences that are generated by them.

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0)
2019 DCSMart Workshop.
   The presented and not presented results allow us to characterize the state of modern
technologies of designing the PRS (focusing on the most progressive of them by the
following basic provisions [3-6].


2        Problem Statement

Before responsible using in mathematical modeling and cryptology, PRS should be
tested. Unfortunately, for many PRS tests, there are some limitations:

     •   checked out only one of the probable ones properties that are characterize
         PRS;
    • not fix family alternatives;
    • do not have theoretical ones ratings power.
    • do not give a correct an estimate of chance sequences provided a little sam-
         ple.
  Problems small and large samples refer to the main problems that arise in practical
application methods analysis data. Let's be use the next classification samples by
number [2], based on requirements presented in the program criteria:

     • very small sample - from 5 to 12,
     • small sample - from 13 to 40,
     • medium sample - from 41 to 100,
     • large sample - from 101 and more.
   The minimum size of the sample limits not so much the algorithm of calculating
the criterion, but the distribution of its statistics. For a row algorithms with too much
small ones numbers sample normal approximation distribution of statistics criterion
will be under question.
   During the research, the localization of the local sections of the bit sequence was
conducted to detect the dependencies in the location of its elements by using the exact
distributions of the corresponding statistics. In the work an explicit form of the joint
distribution of the numbers of 2-chains and numbers of 3-chains of various variants in
a random sequence was obtained. This joint distribution allows more accurate com-
parison of the use of one-dimensional statistics, to analyze the bit sequence small
length by chance.


3        Joint Distribution of number of 2-chains and number of 3-
         chains of a provided type in binary sequence
Consider a sequence of random variables
                                       𝛾1 , 𝛾2 , . . . , 𝛾𝑛 ,                        (1)
where 𝛾𝑖 = {0, 1}, i= 1, 2, . . . , 𝑛, 𝑛 > 0.
    Subsequences 𝛾𝑗 , 𝛾𝑗+1 , . . . , 𝛾𝑗+𝑠−1 ,      sequences (1) are called s-chains, 𝑗 =
1, 2, . . . , 𝑛 − 𝑠 + 1, 𝑠 = 1, 2, . . . , 𝑛.
   Denote 𝜂(𝑡1 𝑡2 . .. 𝑡𝑠 ) the number of s-chains in the sequence (1) that coincide
with 𝑡1 , 𝑡2 , . . . , 𝑡𝑠 , where 𝑡𝑖 = {0, 1}, 𝑖 = 1, 2, . . . , 𝑠.
     Theorem. Let sequence (1) consist of n, 𝑛 > 0 independent identically distributed
random variables; Ρ{𝛾𝑖 = 1} = 𝑝, Ρ{𝛾𝑖 = 0} = 𝑞, p + q = 1, i = 1, 2, . . . , n and
𝑘1 , 𝑘2 , 𝑘3 , 𝑡, – integer numbers such that 𝑘1 ≥ 0, 𝑘2 ≥ 0, 𝑘3 ≥ 0, 𝑚1 + 𝑚0 = 𝑛 ≥
3, 𝑡 𝜖 {0, 1}, 𝑡 ∗ = 1 − 𝑡. Then
      Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 , 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘3 } = ∑𝑛𝑚1 =0 𝑝𝑚1 𝑞 𝑚0 ×
       𝑘 −𝑖          𝛿             𝑚 −𝑘 −𝑘3 −1
    {𝐶𝑚3𝑡−𝑘1−2 𝐶𝑚1𝑡−𝑘1−1 𝐶𝑘1𝑡+1 1    Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 + 1; 𝑚𝑡 − 𝑘1 − 𝛿1 − 1) +
  𝑘3      𝛿2
 𝐶𝑚𝑡−𝑘1 𝐶𝑚𝑡−𝑘1+1 Ζ(𝑘1 ; 𝑚𝑡 − 𝑘1 − 𝑘3 )Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 − 1; 𝑚𝑡 − 𝑘1 − 𝛿2 + 1) +
             𝑘        𝛿       𝑚 −𝑘 −𝑘 −1
         2𝐶𝑚3𝑡 −𝑘1−1 𝐶𝑚3𝑡−𝑘1 𝐶𝑘1𝑡 1 3 Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 ; 𝑚𝑡 − 𝑘1 − 𝛿3 ) +
                           𝜒(𝑚𝑡 − 𝑘1 − 1, 𝑘2 , 𝑘3 , 𝑚𝑡 ∗ )},                      (2)
                                               1, if 𝑎1 = 𝑎2 = 𝑎3 = 𝑎4 = 0,
where 𝑚𝑡 + 𝑚𝑡 ∗ = 𝑛, 𝜒(𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 ) = {                             , 𝛿𝑖 = 𝑘2 −
                                               0, elsewhere
𝑚𝑡 ∗ + 2(𝑚𝑡 − 𝑘1 + 𝛼𝑖 ), 𝑖 = 1,3, 𝛼1 = −1, 𝛼2 = 1, 𝛼3 = 0;
                                       𝑏−1
                                     𝐶𝑎−1  ,     if 𝑎 ≥ 𝑏 ≥ 1;
                        Ζ(𝑎, 𝑏) ≝ { 1, if 𝑎 = 𝑏 = 0;
                                      0,     elsewhere.

                  Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 } = ∑𝑛𝑚1=0 𝑝𝑚1 𝑞 𝑚0 ×
                         𝛿
                     {𝐶𝑚1𝑡 −𝑘1−1 Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 + 1; 𝑚𝑡 − 𝑘1 − 𝛿1 − 1) +
                         𝛿
                     𝐶𝑚2𝑡−𝑘1+1 Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 − 1; 𝑚𝑡 − 𝑘1 − 𝛿2 + 1) +
                                𝛿
                              2𝐶𝑚3𝑡−𝑘1 Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 ; 𝑚𝑡 − 𝑘1 − 𝛿3 ) +
                             𝜒(𝑚𝑡 − 𝑘1 − 1, 𝑘2 , 𝑚𝑡 ∗ )}Ζ(𝑚𝑡 ; 𝑚𝑡 − 𝑘1 ),                   (3)
                  Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘2 } = ∑𝑛𝑚1 =0 𝑝𝑚1 𝑞 𝑚0 ×
                 𝑘              𝑚 −𝑘 −𝑘2 −1
                                  Ζ(𝑚𝑡 ∗ ; 𝑚𝑡 − 𝑘1 − 1)𝜒1 (𝑚𝑡 − 𝑘1 − 2) +
              {𝐶𝑚2𝑡 −𝑘1 −2 𝐶𝑘1𝑡+1 1
     𝑘2     𝑚t −𝑘1                            𝑘        𝑚 −𝑘 −𝑘 −1 𝑚 −𝑘 −𝑘 −1
    𝐶𝑚𝑡−𝑘1 𝐶𝑚 ∗ −1 Ζ(𝑘1 ; 𝑚𝑡 − 𝑘1 − 𝑘2 ) + 2𝐶𝑚2𝑡−𝑘1−1 𝐶𝑚 𝑡∗ −11 2 𝐶𝑘1𝑡 1 2 +
             𝑡                                          𝑡
                            𝜒2 (𝑚𝑡 − 𝑘1 − 1, 𝑘2 , 𝑚𝑡 ∗ )},                          (4)
                   1, if 𝑎1 ≥ 1,                            1, if 𝑎1 = 𝑎2 = 𝑎3 = 0,
where 𝜒1 (𝑎1 ) = {               , 𝜒2 (𝑎1 , 𝑎2 , 𝑎3 ) = {
                  0, elsewhere                           0, elsewhere
Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) + 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘2 } = ∑𝑛𝑚1 =0 𝑝𝑚1 𝑞 𝑚0 × {(∑𝛿+𝛿 ∗ =𝑎1 1 ×
      𝛿               ∗            𝑚 −𝑘 −δ−1
     𝐶𝑚         𝐶𝛿        𝐶 𝑡 1
        𝑡 −𝑘1 −2 𝑚𝑡 −𝑘1 −1 𝑘1 +1
                                      Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 + 1; 𝑚𝑡 − 𝑘1 − 𝛿 ∗ − 1) +
               δ       𝛿∗
    (∑𝛿+𝛿∗=𝑎2 𝐶𝑚𝑡 −𝑘1 𝐶𝑚𝑡−𝑘1+1 Ζ(𝑘1 ; 𝑚𝑡 − 𝑘1 − δ)Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 − 1; 𝑚𝑡 − 𝑘1 −
                       𝛿            ∗    𝑚 −𝑘 −δ−1
𝛿 ∗ + 1))+(∑𝛿+𝛿∗ =𝑎3 𝐶𝑚          𝐶𝛿     𝐶 𝑡 1
                         𝑡 −𝑘1 −1 𝑚𝑡 −𝑘1 𝑘1
                                                   Ζ(𝑚𝑡 ∗ − 𝑚𝑡 + 𝑘1 ; 𝑚𝑡 − 𝑘1 − 𝛿 ∗ ))
   +𝜒(𝑚𝑡 − 𝑘1 − 1, 𝑘2 , 𝑚𝑡 ∗ )},                                                            (5)
is the symbol ∑ denotes addition over all non-negative integers 𝛿𝑡 and 𝛿𝑡 ∗ such that
𝑎1 = 𝑘2 − 𝑚𝑡 ∗ + 2(𝑚𝑡 − 𝑘1 − 1), 𝑎2 = 𝑘2 − 𝑚𝑡 ∗ + 2(𝑚𝑡 − 𝑘1 + 1), 𝑎1 = 𝑘2 −
𝑚𝑡 ∗ + 2(𝑚𝑡 − 𝑘1 ).


4      Experiment

As a result of applying this technique for testing pseudo-random sequences for two-
dimensional statistics, you can build tables (relations (2) - (5)) and bubble diagrams
(relations (3) - (5)) with which you can get the probability of the distribution of zeros
and ones in a given sequences.
    As practice shows, the use of ready-made tables for analyzing the sequence of
randomness allows you to get the answer as quickly as possible, in contrast to the
classical testing method.
   Consider an example of tables and bubble diagrams for a bit-sequence of small
length. For example, let the length of the bit sequence n, n = 32 for relations (3) - (5)
and n = 24 for relations (2).


4.1    Illustration of the Use of Equality (2)
In Table 1 and in Fig. 1 shows the use of the relation (2) for a small sample 𝑛, 𝑛 =
32, and some values 𝑘1 and 𝑘2 .

                 Table 1. Using relation (3) for a small sample of length 32

𝒌𝟏      𝒌𝟐          𝑷            𝑷𝒄                𝒌𝟏      𝒌𝟐         𝑷           𝑷𝒄
 4      5        0,0102       0,44366              9       4      0,01595      0,67931
 6      1       0,01037       0,45403              6       2      0,01596      0,69527
12      1        0,0108       0,46483              10      1      0,01623       0,7115
 5      2       0,01106        0,4759              8       1      0,01642      0,72791
 9      5       0,01121       0,48711              6       5      0,01655      0,74446
11      3       0,01157       0,49868              7       5      0,01655      0,76102
 5      6       0,01187       0,51055              9       1      0,01721      0,77823
10      4       0,01189       0,52244              10      2       0,0181      0,79633
 7      6       0,01203       0,53447              6       4      0,01898      0,81531
 6      6       0,01289       0,54736              6       3      0,01901      0,83432
11      1       0,01387       0,56123              8       4      0,01915      0,85346
 7      1       0,01393       0,57516              7       2      0,01981      0,87328
 5      3       0,01417       0,58933              9       3      0,01985      0,89313
 5      5        0,0142       0,60353              7       4      0,02039      0,91351
11      2       0,01421       0,61774              9       2      0,02085      0,93437
 8      5       0,01449       0,63222              8       2      0,02156      0,95593
 5      4       0,01519       0,64741              7       3      0,02192      0,97785
10      3       0,01595       0,66336              8       3      0,02215          1
   In Table 1 the first column contains all possible values 𝑘1 and 𝑘2 , for which proba-
bility is Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 } ≥ 0,01. The second column of Table 1 gives
the probabilities (in non-decreasing order) 𝑃{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 } for pairs
of numbers (𝑘1 , 𝑘2 ) listed in the first column.
   Each row of the fourth column contains the sum of the accumulated probabilities
before the event is implemented {𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 } inclusive where 𝑘1
and 𝑘2 indicated in the same line in the first column.


4.2    Illustration of the Use of Equality (4)
In Table 2 and in Fig. 2. shows the use of the relation (4) for a small sample of n, n =
32, and some values of 𝑘1 and 𝑘2 .

                  Table 2. Using relation (4) for a small sample of length 32

 𝑘1     𝑘2          𝑃              𝑃𝑐               𝑘1      𝑘2         𝑃            𝑃𝑐
 12     1       0,010309        0,25025              5      6      0,019461     0,524834
  4     7       0,010346       0,260596             11      2      0,020707     0,545541
 13     2       0,010566       0,271162              8      2      0,020939      0,56648
 10     1       0,010906       0,282067              6      3      0,022517     0,588997
 11     1       0,011296       0,293363              5      4      0,023782      0,61278
  3     6       0,011426       0,304789             10      2      0,024014     0,636794
  7     6        0,01148       0,316269              9      2      0,024221     0,661015
  9     5       0,011732       0,328001              9      4      0,025878     0,686893
 12     3       0,011875       0,339876              7      5      0,026396     0,713288
  5     3       0,013051       0,352927             10      3      0,027086     0,740375
  4     4       0,013083        0,36601              5      5      0,027095      0,76747
  7     2       0,015224       0,381234              6      5      0,029893     0,797363
 12     2       0,015705       0,396939              7      3      0,030948     0,828311
  6     6       0,016693       0,413631              6      4      0,033093     0,861404
 10     4       0,017033       0,430665              9      3      0,033247     0,894651
  4     6       0,017494       0,448159              8      4      0,033621     0,928272
  4     5       0,018859       0,467018              8      3      0,034964     0,963236
 11     3       0,019157       0,486174              7      4      0,036764         1
  8     5       0,019199       0,505373

  Table 2 is formed of columns whose contents are similar to the contents of the Table
1 columns.


4.3    Illustration of the Use of Equality (5)
In Table 3 and in Fig. 3 shows the use of the relation (5) for a small sample 𝑛, 𝑛 =
32, and some values 𝑘1 and 𝑘2 .
                 Table 3. Using relation (5) for a small sample of length 32

 𝑘1    𝑘2            𝑃             𝑃𝑐               𝑘1     𝑘2          𝑃              𝑃𝑐
  6    11        0,01018        0,35129             6      10      0,01737         0,61156
  4    12        0,01025        0,36154             10     6        0,019          0,63056
  6     6        0,01028        0,37182             5      10      0,01963         0,65019
 12     4        0,01165        0,38347             7      9       0,01986         0,67005
  7    10        0,01178        0,39525             7      6       0,02017         0,69022
 11     6        0,01179        0,40704             6      7       0,02026         0,71048
  9     4        0,01209        0,41913             10     5       0,02064         0,73112
  4     9        0,01229        0,43143             9      7       0,02083         0,75195
  8     9        0,01285        0,44428             8      8        0,0211         0,77305
 10     7         0,0129        0,45718             9      5       0,02156         0,79461
  9     8        0,01325        0,47043             5      9       0,02159          0,8162
  5    11         0,014         0,48444             6      9        0,0242          0,8404
  4    11        0,01416         0,4986             9      6       0,02513         0,86552
 11     4        0,01481        0,51341             6      8       0,02612         0,89165
 10     4        0,01521        0,52862             8      6       0,02619         0,91783
  4    10        0,01543        0,54406             7      8       0,02698         0,94481
 11     5        0,01578        0,55984             8      7       0,02735         0,97217
  8     5        0,01706        0,57691             7      7       0,02783             1
  5     8        0,01729         0,5942

  Table 3 is formed of columns whose contents are similar to the contents of col-
umns from Table 1.


4.4   Illustration of the Use of Equality (2)
In Table 4 shows the use of the relation (2) for a small sample 𝑛, 𝑛 = 24, and some
values 𝑘1 , 𝑘2 and 𝑘3 .

                 Table 4. Using relation (2) for a small sample of length 24
            𝑘1         𝑘2            𝑘3                𝑃                    𝑃𝑐
            5          1             3             0,009096             0,851162
            4          4             3             0,009398              0,86056
            5          1             4             0,009748             0,870309
            8          1             2             0,009901              0,88021
            7          1             3             0,009946             0,890155
            4          3             3             0,009999             0,900154
            6          3             2             0,010374             0,910529
            7          1             2             0,010382             0,920911
            4          2             4             0,010422             0,931332
            6          2             2             0,010553             0,941885
            7          2             2             0,011017             0,952902
            5          3             3             0,011284             0,964186
            6          2             3             0,011495             0,975681
            6          1             3             0,011903             0,987584
            5          2             3             0,012416                 1
   In Table 4 in the first, second and third columns are all possible values 𝑘1 , 𝑘2 and
𝑘3 , for which probability Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 , 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘3 } ≥ 0,009 ,
and the contents of the fourth and fifth columns are similar to the contents of the third
and fourth columns of the Table 1.


5                  Results and Discussion

As a result of applying this technique for testing pseudo-random sequences for two-
dimensional statistics (relations (3) - (5)), you can build a bubble diagram with which
you can get the probability of the distribution of zeros and ones in a given sequence.
  Consider examples of bubble diagrams for a bit sequence of small length n, n = 32.


5.1                Graphic Illustration of the Use of Equality (3)
Fig. 1 gives a bubble chart in which the first parameter (horizontal axis) is the value
𝑘1 , the second parameter (vertical axis) is the value 𝑘2 , and the third parameter (the
bubble size) is the probability of the event occurring {𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 },
presented in percent.

               6


               5          1,42%    1,66%      1,66%     1,45%

               4          1,52%    1,90%      2,04%     1,91%      1,60%
    Value k2




               3          1,42%    1,90%      2,19%     2,21%      1,98%     1,59%

               2                   1,60%      1,98%     2,16%      2,09%     1,81%        1,42%

               1                                        1,64%      1,72%     1,62%

               0
                   4        5         6         7          8         9         10          11     12
                                                       Value k1

                            Fig. 1. Bubble chart of sequence with the length 32 for (3)

   After analyzing Fig. 1 it can be concluded that for the analysis of the sequence of
chains of small and medium length (from 13 to 100 elements), one-dimensional statis-
tics do not always give the correct result. For example, if we consider the sequence
where the parameter 𝑘1 = 8, then we can draw a conclusion with a degree of probabil-
ity about 10% of randomness of the sequence with these characteristics, however, if
we pay attention when 𝑘1 = 8 and 𝑘2 = 5 it can be argued that this sequence is non-
random, therefore as shown in Fig. 1 we have Ρ{𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) = 𝑘2 } =
1,45%. What also shows the lack of use of one-dimensional statistics for the analysis
of small and medium bit sequences.
   An approach to testing using n-dimensional statistics allows us to rely on a deeper
justification of the randomness of generated sequences.


5.2              Graphic Illustration of the Use of Equality (4)
In Fig. 2 shows the use of the relation (4) for a small sample 𝑛, 𝑛 = 32 , and some
values 𝑘1 and 𝑘2 .

             6



             5          2,71%     2,99%      2,64%



             4          2,38%     3,31%      3,68%     3,36%      2,59%
  Value k2




             3                    2,25%      3,09%     3,50%      3,32%      2,71%



             2                                         2,09%      2,42%      2,40%     2,07%



             1
                 4        5          6         7         8           9         10        11    12
                                                      Value k1

                      Fig. 2. Bubble chart of sequence with the length 32 for formula (4).

   Fig. 2 gives a bubble chart in which the first parameter (horizontal axis) is the val-
ue 𝑘1 , the second parameter ( vertical axis) is the value 𝑘2 , and the third parameter
(bubble size) is the probability of the event occurring {𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘2 },
which is represented as a percentage.


5.3              Graphic Illustration of the Use of Equality (5)
In Fig. 3 shows the use of relation (4) for a small sample 𝑛, 𝑛 = 32, and some values
𝑘1 and 𝑘2 .
   Fig. 3 gives a bubble chart in which the first parameter (horizontal axis) is the val-
ue 𝑘1 , the second parameter (vertical axis) is the value 𝑘2 , and the third parameter
(bubble size) is the probability of the event occurring {𝜂(𝑡 𝑡) = 𝑘1 , 𝜂( 𝑡 ∗ 𝑡 ∗ 𝑡 ∗ ) +
 𝜂( 𝑡 ∗ 𝑡 𝑡 ∗ ) = 𝑘2 }, which is represented as a percentage.
                   10


                   9           2,16%      2,42%


                   8                      2,61%     2,70%      2,11%
        Value k2




                   7                      2,03%     2,78%      2,74%      2,08%


                   6                                2,02%      2,62%      2,51%


                   5                                                      2,16%     2,06%


                   4
                        4         5         6          7         8          9         10       11
                                                        Value k1
                        Fig. 3. Bubble chart of sequence with the length 32 for formula (5).

   In this paper, the exact compatible distributions of some statistics (0, 1) -sequences
of length 1 < 𝑛 < ∞ are given. For a bit sequence of small length n, n = 32, the tables
containing the numerical values of the corresponding distribution are given. These
tables, as well as the proposed graphic representations, can be used to test the hypoth-
esis of the randomness of the arrangement of zeros and units.


6           The Results of the Comparison the NIST Statistical Test Suite
            and Test of PRS of Small Length using Multidimensional
            Statistics
Consider the well-known examples that are given in [7, 8]. Let us analyze the submit-
ted sequences for the corresponding tests, where:
    •       P is the probability of sequence randomness according to the selected criterion
            from the first column,
    •       P1 is the probability obtained using relation (2),
    •       P2 is the probability obtained using relation (3),
    •       P3 is this is the probability obtained using relation (4),
    •       P4 is this is the probability obtained using relation (5).
                              Table 5. The results of the comparison
                 Input Size
                  Recom-
    Test        mendation,
                                length       Sequences        Р         P1      P2      P3      P4
                n more than
Frequency
(Monobit)       100           10           1011010101       0,527      0,007   0,027   0,007   0,057
Test
Frequency
Test within a   100           10           0110011010       0,801      0,01    0,075   0,102   0,01
Block
Runs test       100           10           1001101011       0,147      0,052   0,075   0,087   0,09
Binary
                              N=20 M =     01011001001
Matrix Rank     38000                                       0,741      0,004   0,008   0,014   0,017
                              Q=3          010101101
Test
Discrete
Fourier
Transform       1000          N=10         0001010011       0,109      0,063   0,109   0,084   0,092
(Spectral)
Test
Non-
overlapping                   N=20, 2
                                           10100100101
Template         200          blocks of                     0,344      0,01    0,026   0,051   0,025
                                           110010110
Matching                      length 10
Test
Maurer’s
“Universal                                 01011010011
                380000        N=20                          0.767      0,001   0,03    0,009   0,023
Statistical”                               101010111
Test
Serial test     100           N=10         0011011101       0,907      0,029   0,064   0,087   0,088
Approximate
                100           N=10         0100110101       0,261      0,052   0,075   0,087   0,09
Entropy test
Cumulative
Sums            100           N=10         1011010111       0,411      0,02    0,031   0,043   0,057
(Cusum) Test
Random
Excursions      106           N=10         0110110101       0,502      0,02    0,027   0,043   0,031
Test
Random
Excursions      106           N=10         0110110101       0,683      0,02    0,027   0,043   0,031
Variant Test


   As can be seen from the table, the use of two-dimensional statics gives a more ac-
curate result for short sequences. And also, according to [8], the recommended mini-
mum sequence length n is greater than 100 bits.
7      Conclusions

The available approaches to testing pseudorandom sequences show low flexibility and
versatility in the means of finding hidden patterns in the data. To solve this problem,
it is suggested to use algorithms based on multidimensional statistics.
    The approach to testing using multidimensional statistics allows you to rely on a
deeper justification of the randomness of the generated sequences. This area is prom-
ising for scientific research.
    The paper proposed a methodology for testing a sequence and obtained a correct
view of the joint distribution of the numbers of 2-chains and the numbers of 3-chains
of various variants in a random bit sequence of a given small length.
    These algorithms and scheme of work for verification statistical tests of random-
ness sequences (proposed in chapter II) combine all the advantages of statistical
methods and are the only alternative for the analysis of sequences of small and medi-
um length.
    To implement the proposed approach, a PRS software test package is being devel-
oped, which will include tests using multidimensional statistics, which are well rec-
ommended for testing a small length PRS. As a result of the implementation of this
technique, an information system will be created that will allow analyzing the PRS of
a small length and choosing a quality PRS for use in a particular subject area.


References
 1. Маsоl V., Pоpereshnyаk S. Stаtіstісаl аnаlysіs оf lосаl plоts оf bіts sequenсes. Prоblemy
    uprаvlenіyа і іnfоrmаtіkі, 5, 92-105 (2019).
 2. Popereshnyak S. Analysis of pseudorandom small sequences using multidimensional sta-
    tistics. In: The 3rd IEEE International Conference on Advanced Information and Commu-
    nication Technologies (AICT), pp. 5.4.1-5.4.4. IEEE Press, Ukraine (2019)
 3. Nejad F. H., Sabah S., Jam A. J. Analysis of avalanche effect on advance encryption
    standard by using dynamic S-Box depends on rounds keys. In: The 2014 International
    Conference on Computational Science and Technology (ICCST), pp. 1-5. IEEE Press, Ko-
    ta Kinabalu (2014)
 4. Bhaskar C. U., Rupa C. An advanced symmetric block cipher based on chaotic systems.
    In: The 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp.
    1-4. IEEE Press, Vellore (2017)
 5. Busireddygari P.; Kak S. Pseudorandom tableau sequences, In: 51st Asilomar Conference
    on Signals, Systems, and Computers, pp. 1733 – 1736. IEEE Press (2017)
 6. Gurugopinath S., Samudhyatha B., Multi-dimensional Anderson-Darling statistic based
    goodness-of-fit test for spectrum sensing. In: Seventh International Workshop on Signal
    Design and its Applications in Communications (IWSDA). pp. 165-169. Bengaluru, India.
    (2015).
 7. Moody D. Post-quantum cryptography: NIST’s plan for the future. In: Proceedings of the
    Seventh International Conference on Post Quantum Cryptography. IEEE Press, Japan,
    (2016). https://pqcrypto2016.jp
 8. Special Publication 800-22. A Statistical Test Suite for Random and Pseudorandom Num-
    ber Generators for Cryptographic Applications. http://csrc. nist.gov