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Abstract. The methods and speed-optimal algorithms oriented to spatial localization of 

pulsed-point sources manifesting themselves at random time by generation of 

instantaneous delta pulses are discussed. Optimal search procedures have been proposed 

that are focused on the localization of random pulsed-point objects in standard and 

advanced search modes (for example, in the absence of a priori information about the 

intensity of the source or when its density is unknown within the search interval). 
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1 Introduction 

Research on the optimal search for random pulse-point objects is subject of current interest for many scientific 
and technical disciplines. The need to conduct them arises in the design of various electron-optical converters and 
detectors [1]; in the tasks of the suppression of impulse noise on noisy and low-contrast images [2]; in the 
development of methods for tech troubleshooting, appearing in a form of the alternating equipment failures [3]; in 
problems of detecting radioactive sources using systems consisting of one or several sensors [4], in radio physics 
and radio astronomy, when searching for sources of gravitational waves [5] and in many other applications. This 
paper presents the methods and algorithms for the speed-optimal search for point Poisson sources that manifest 
themselves at random time by generation of instantaneous delta pulses. The optimal search algorithm should, as a 
rule, satisfy one of two requirements: minimize the total search effort required to detect an object; or maximize the 
total probability of detection in the presence of limited search effort. 

The point-pulsed source will be understood below as an object of negligibly small angular dimensions 
(mathematical point), having a random distribution on the abscissa axis with a priori probability density f(x) and 
radiating infinitely short pulses (-functions) with Poisson intensity λ. Thus, the time intervals between pulses are a 
random variable t with an exponential probability density h(t) = λexp(-λt). The search for an object is carried out 
with the help of a recording device having a tunable «window» with an arbitrarily time function. The pulse is fixed 
if the active object that initiated the pulse is in the «view window» of the recording device. Otherwise, the pulse is 
considered to be missed. When registering the pulse, the window narrows, and (as a result) the position of the source 
is determined more accurately. It is required for the minimum (in statistical terms) time to find a source with an 
accuracy of  

2 Single-step search algorithms 

Introducing the binary function x 
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describing the view window at time t, we obtain the average time from the start of the search to the registration of 

the first pulse: 
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For the random priori distribution of a pulsed source on the x-axis, the construction of even a one-step (which 
ends immediately when the first pulse is registered) time-optimal search procedure causes considerable difficulties. 
In one-step periodic search algorithms, the relative load φ(x) on the point x (that is, the relative time it’s located in 
the view window) remains constant throughout the entire search time. With this approach, the problem is to find the 
function φ(x), minimizing the average search time 
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when the following conditions are met 
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Optimization of expression (1) with constraints (2) - (3) belongs to non-linear programming problems [6-7]. To 
solve it, we will use the method of Lagrange multipliers [8] and we will look for the function φ(x) minimizing the 
expression 
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Differentiating by φ and taking into account the constraint (2), we obtain 
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If for any x condition (3) is not violated, then function (4) is a solution to the formulated extremal problem. If 
there exist such domains x, where the solution φ(x)> 1, then inside these areas it is necessary to put φ(x) = 1, and to 
recalculate (for the remaining points) the indefinite factor µ taking into account the already changed conditions (2) 
and (3). After that, any binary function u(x, t) can be selected as the optimal search strategy if it satisfies the 
relations 
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In the general case, building an optimal (not necessarily periodic) one-step search algorithm is associated with 
finding such a function φ(x, t) – the relative load on point x at time t, – which minimizes the average localization 
time 

  
t

dxxdxfdt
0

)),(exp()( 

 

provided that  

1),(0  tx                    (5) 

and for any t 
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To simplify further calculations, we introduce a function 
t

dxtx
0

),(),(   corresponding to the total 

time for point x stays in the view window (for the entire period from the beginning of the search to the time t). To 

take into account constraints (5) and (6), we again introduce the Lagrange multiplier μ(t). Then the task of building 

an optimal search strategy will be reduced to finding the function α(x,t) minimizing the functional 
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The solution to this variational problem is the function 
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where the multiplier μ(t) is determined from relation (7), and any binary function can be chosen as the optimal 

search strategy u(x, t) that satisfies the conditions 
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The use of optimal search algorithms in practice leads to certain difficulties. The fact is that in those cases when 
source’s priori distribution density function differs from the uniform one, both of the proposed optimal one-step 
search algorithms cannot be physically realized by moving the singly connected (non-separable) scanning window. 
Therefore, in actual search procedures, it is advisable to perform a one-step procedure according to the following 
scheme. The interval (0, L) is pre-divided into a series of discrete elements having a length ε, and the a priori given 
density f(x) is “stepwise” approximated on each of them. The value of ε is considered to be sufficiently small (which 
meets the high requirements for localization accuracy) so that the variation of the function f(x) within one discrete 
can be neglected. The search must begin with “observation” of the highest “peak”, within which the amplitude 
function f(x)  is maximum, then after the time t1, the window is alternately set under the two highest “peaks”, then 
after the time t2, three elements are alternately observed, etc. All switching moments ti are determined in exact 
accordance with the above relation (8), which is the basis for constructing an optimal search strategy. 

It should be noted that the search algorithm under discussion assumes that the intensity of the source λ is known 
in advance. If such a priori information is not available, it is possible to recommend a periodic procedure that does 
not depend on this intensity. In accordance with this strategy, the integrals of the density f(x) are initially calculated 
in each ε-discrete. If the total number of ε-increments (into which the initial search interval is divided) is m, and the 
“step” integrals over each of them are equal to P1,P2, ...,Pm, then the view window should cycle through all discretes 
with relative load 
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These βi  values are easy to obtain if the method of Lagrange multipliers is used again to minimize the average 
search time: 
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3 Multi-step search algorithms 

With high requirements for localization accuracy, one-step algorithms are far from optimal. So, when 
constructing an optimal search procedure, we cannot limit ourselves to one-step algorithms, and should consider a 
search procedure consisting of several steps. For the average time of the m-step localization procedure, the ratio is 
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where ui(x,t,t1,…,ti-1) is the function that sets the view window at the i-th stage, provided that the intervals recorded 

between the previous (i-1) pulses were respectively t1,t2,…,ti-1. It is not always possible to find extremals that deliver 

a minimum to the localization time (9) in the general case (when the probability density f(x) is arbitrary). Therefore, 

we have developed a universal procedure to search for a source in the case when there is no priori information about 

the intensity of the source (so, we can assume that the source has a uniform distribution over the search interval). 

Due to the limited scope of this message, only the resulting table summarizing the parameters of the optimal multi-

step search for a random uniformly distributed point source for systems with one receiver is given, and all necessary 

analytical and numerical calculations are omitted. More detailed information on this can be found in [9-10].  

Table 1. Parameters of the optimal procedure for finding a random uniformly distributed pulse source on the 
interval (0,L) depending on the required localization accuracy ε. 
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when (ε/L) → 0, we get the following asymptotic relations for systems with one receiver: 
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The results presented above are the set of speed-optimal algorithms to localize random pulsed-point sources 
using system with one receiver. The studies were carried out both for single-step search procedures (in the case of an 



arbitrary probability density of the random source distribution on the search interval) and for multi-stage localization 
algorithms (for those cases when a random point-impulse object has a uniform distribution on the search interval). 
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