CEUR-WS.org/Vol-2542/MOD20-SP3.pdf

Joint Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers
22 Modellierung 2020: Short Papers

Generated Enterprise Information Systems: MDSE for
Maintainable Co-Development of Frontend and Backend

Arkadii Gerasimov! Patricia Heuser? Holger Ketteni? Peter Letmathe? Judith Michael!
Lukas Netz! Bernhard Rumpe! Simon Varga'

Abstract: Universities, like any application domain and industry sector, have to establish a well
functioning, reliable management accounting, and financial reporting software system. Currently,
chairs have different technical solutions for their financial management such as commercial accounting
software tailored to the needs of the central administration as well as the chairs’ own data collections
with additional information in other software tools. Previous work did not investigate the use of
model-driven software engineering methods for the maintainable development of a full-size real-world
enterprise information system. This paper shows the application of model-driven software engineering
methods to create this system and support the maintainable co-development of frontend and backend
written in different programming languages. We are using a variety of models and modeling languages
in addition to an application generator that allows for continuous re-generation. Our approach can be
easily adapted to other problem domains to create a functional prototype out of models with minimal
manual effort.

Keywords: Controlling and Financial Management; Domain-Specific Modeling Languages; Enterprise
Information Systems; Code Generation; Model-Driven Software Engineering; Prototyping

1 Motivation and Introduction

Motivation and relevance. Universities, like any application domain and industry sector,
must drive the digital transformation of their processes. These processes include teaching,
research, acquisition of third party funding and administration. Thus, appropriate and reliable
software systems are an essential requirement. Chairs and institutes have to use commercial
accounting software tailored to the needs of the central administration. Additionally, they
have own data collections (including complex sheets and cross-references) using standard
calculation tools such as Excel. Parts of this data has to be regularly synchronized with
the university-wide information system by hand which is, clearly, error prone. Thus, a
software solution is needed to improve the chairs’ financial management accounting and
planning. From a software engineering perspective, the application of Model-Driven
Software Engineering (MDSE) methods on such a full-size real-world system is a great
opportunity to investigate the maintainable development of such an Enterprise Information

! Software Engineering, RWTH Aachen University, Aachen, Germany {lastname} @se-rwth.de
2 Controlling, RWTH Aachen University, Aachen, Germany {lastname } @controlling.rwth-aachen.de

Copyright © 2020 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).


{lastname}@se-rwth.de
{lastname}@controlling.rwth-aachen.de

Generated Enterprise Information Systems 23

System (EIS) which leads to the following research question: How does model-based
development support the maintainable co-development of frontend and backend written in
different programming languages?

Approach and main results. We show how MDSE methods can be used to create such a
solution (an EIS) for planning, revision and governance of management processes and cost
accounting. We state that MDSE methodologies suit best for the development of EIS for
university chairs. Utilizing model-driven approaches allows for a strong interaction with
end-users: Incremental releases of prototypes are discussed with them and their feedback is
included in further improvement steps. From the technical perspective, generative software
engineering enables continuous regeneration based on changing requirements and reduces
the effort for producing handwritten code. Our approach uses a combination of models as
input for an application generator which was simultaneously developed within this project
and creates an EIS as output which can be extended by handwritten code.

Outline. The remainder of this paper is structured as follows. The next section describes the
problem domain and shows the requirements for the resulting system. Section 3 presents
how later users were involved, how model- based software engineering was applied and
what domain specific languages and models were used. Section 4 discusses our approach
and the results of the software solution. The last section concludes the paper.

2 The MaCoCo Project

To support small and medium-sized chairs at RWTH Aachen University, the interdisciplinary
project MaCoCo (Management Cockpit for University Chair Management and Controlling)
started in 2016 by two chairs: Controlling and Software Engineering. The main goal is
to develop an enterprise information system for the planning, revision and governance of
management processes and cost accounting [Ad18].

The software solution needs to be tailored for the needs of small and middle- sized chairs
at the university. The phrase small and middle-sized is not related to a certain amount
of funding, staff or accounts (there are no technical restrictions on this level) but to their
organizational structure. In contrast, large chairs often have further administrative structures,
are more workflow oriented, and have other needs regarding their financial affairs. Thus,
they already use systems for accounting and sometimes even workflow systems similar
to companies in the private sector. In addition to the functional requirements of such an
EIS, e.g. to create/read/update/delete accounts, budgets, bookings, staff or contracts, the
following goals were identified.

1. Provide high adaptability. The system and underlying regulations for universities
management accounting underlie continuous changes. Thus, frequent changes should
be applicable.



24 Gerasimov et. al

2. Ensure consistency. Changes, which should affect all chairs should be automatically
available for them, e.g., changes of the salaries due to negotiations of the labour
union.

3. Data sovereignty. Each chair should have the sovereignty over their data. This means
that no access mechanisms for the central administration should be provided.

The competence, what concepts should be developed in the EIS is enclosed in the university
staff. Thus, their expertise and competency needs to be continuously included into devel-
opment and testing processes which supports the need for an agile process. Consequently,
the software engineering process follows an agile paradigm, which strongly involves future
users in the conceptualization process.

3 Approach

In order to fulfill the requirements, we follow a model-driven and generative approach
together with strong user involvement. Following this user-centered approach, MaCoCo
included a group of lead users giving feedback upon the end-user experience and helping in
the development of concepts and system functions. Each member of the lead user group
works in the target domain of MaCoCo on a daily basis and represents a larger group of end
users. Additionally a steering committee supervised and evaluated the concepts and overall
project progress.

3.1 Model-driven Software Engineering of Enterprise Information Systems

One way to incorporate user requirements is the direct involvement of domain experts
in all the phases of a project. Abstract models can be created to ease the communication
basis and reduce misunderstandings. Model-driven Software Engineering (MDSE) is the
general description of software projects which use models as an essential part to describe
the abstract specification i.e., data structure or program flow for the software. Those models
are suited for the domain’s application context. Through this specialization domain experts
can easily read them and thus are directly included in the development process.

Models as abstract structure. Models that provide an abstracted view of the real world,
help to focus on aspects in isolated and structured manner [HMOS; St73]. A model always
represents only a limited scope of aspects of the real world. Thus a set of multiple models is
used to provide a manageable representation. In MDSE such different kind of models can
be used to describe the application structure. They are created at the analysis and design
phase or even throughout the development of the application. Based on these models the
software can be evaluated, planned and developed. Models are used as specification or
guideline for the developer, for documentation purposes, static analysis, automated tests,
rapid prototyping and for code generation.



Generated Enterprise Information Systems 25

Depending on the given domain, specialized Domain Specific Languages (DSLs) [V513]
can be used to define models, that isolate individual aspects of the target domain. DSLs
are used, to provide an abstract view in the context of the given domain and reduces the
miscommunication with domain experts. They enable the domain experts to model a specific
problem and provide a standardized specification within a project. For software engineering,
DSLs are mostly based on UML, e.g. class or sequence diagrams.

3.2 Models in the development process

A software engineer typically implements an application based on models derived from the
requirements. Based on the information content of a model, it can be used to derive repetitive
parts of the implementation directly. In the following we present the set of elementary
models used to generate the core of the enterprise information system which is the backbone
of MaCoCo. The used generator framework MontiGem [Ad19] is based on the MDSE
experiences of the SE group of RWTH Aachen University and the developed MontiCore
language workbench and code generation framework [HR17; KRV 10]. Models, created
with UML/P [Rul6] inspired modelling languages, are used as input for this framework.

CD4A GuiDSL
1 package de.macoco; 1 webpage SimplePage ()
2 classdiagram Example Aggregate—CD4A.. {
{ 1 class PersonDetail { i ro;uéf_;n(“Do
3 class.Person { 2 String name; something® {
4 stzlng name;j 3 List<long> . click —> g
5 int age;
. ) c;:hangesInSalary something
7} 4} 5 } 0
List. (1) Example  for List. (2) Example : ) }
CD4A aggregate based
representing the on the cd in List. (3) Example
class Person List. 1. gui model with
with attributes a callback in a
name and age. button.

Fig. 1: Example of Models used in MaCoCo

Class diagram for analysis (CD4A). CD4A is a textual DSL, which enables to model class
diagrams intended for analyses[Ob17]. They are based on UML-CD features and have a
Java-like syntax [Rul6]. In MaCoCo, CD4A models are used to describe the data structure
(see List. 1). Line 1 describes, the package name and is similar handled to the package
structure in Java. The keyword classdiagram signals the start of the class diagram and
the name should be the filename via convention. A CD4A model can have multiple classes,
interfaces, and many more definitions. One such example definition is the Person class
in line 3 with two attributes namely name (4) and age (5). Visibility modifier such as
+/public can be omitted and leave an underspecification of the model. The generator



26 Gerasimov et. al

then decides how to handle such cases. Context conditions check, e.g., unique class- or
attribute-names. Available types for the attributes are either predefined Java types, like
String, int, long, Date, or imported types of other class diagrams.

Aggregates. Aggregates are based on the CD4A-Language (see List. 2). They are used for
two things: (1) The data exchange between the application frontend and backend and (2) as
view models for the frontend itself. Currently, it is necessary to write the data acquisition
by hand. This could be further improved by adding expressions, which describe how each
value in an aggregate is constructed. Aggregates are used to keep data sovereignty on the
backend. This way, the frontend just provides filters or show/hide options but doesn’t need
any logic for the data itself. List. 2 shows a simple aggregate definition which has the exact
same syntax as the CD4A DSL. Using a stronger correlation to classes of the domain class
diagram, some parts, e.g., types, could be omitted. Adding expressions, which describe how
an attribute is build based on the domain class model, more logic could be extracted or even
the complete aggregate could be generated.

GuiDSL. A Graphical User Interface (GUI) description language was developed and used
to simplify and generify the GUI-creation for the frontend. List. 3 shows an example
GuiDSL model. It is intended to describe the view of a (web)page. Included are interactions,
such as click- or write-events. The language abstracts the complete visual design and data
correlation of a page. Basic communication, e.g., fetching of the data is already generated.
Line 1 in List. 3 shows the views name. A button is used at line 3 with a c1ick-callback.
Additional handwritten code is needed for the full implementation of the callback.

provides MontiGEM gl :_ ._ _____________ ,.-___________-__________"
i ! T T
% USSR 2] 11 |Backend it g]||Fronenat  H]
1
Domain Expert GUI-Modell E : ! ¥ v
—H-="1
Target Target
depends on GUI-Generator ' Sou?'cegl Sou?cegl
1
provides (— &) 1 Code Code
_input_ ] gl El i A >
q1--=! | uses | uses
Domain Expert M DS-Generator L E ! a
depends on A HWC HWC
L — ! Source Source
pre ovides gl : configures Code Code
input \ . x
----- > Data Structure
Model

T t+

1 1

Domain Expert — gl implements 1 1
Developer

Fig. 2: Simplified overview of the main components of MontiGem

Generator environment. The generator processes provided models (in case of Figure 2
gui-, aggregate- and data structure models) and generates source code based on them. This
code can be extended by handwritten code and additional business logic implementations.
Compared to existing tooling which only support the development in certain aspects, the
generator framework MontiGem has the goal to provide a functional prototype with minimal



Generated Enterprise Information Systems 27

manual effort. Additionally, a lot of boilerplate code is omitted and moved to the generated
code. Changes in a model cascade naturally through the entire code base.

MontiGem processes the input models and produces an application that reflects each aspect
defined by domain experts which can describe e.g., the data structure or GUI features. Thus,
models form the common basis for discussions on change requests. The generator-layer
supports the iterative and incremental development of the application by allowing continuous
re-generation using the provided models. The described models only describe the generated
structure, but do not contain specific business logic. The generated code can be adapted
by adding handwritten code [Hal5]. It is still kept separated from generated code, while
integrating it in the product and enabling repetitive generation. The handwritten code
extends the generated structure and provides business logic. This is achieved by logic in
the generator called TOP-mechanism [HR17], which checks if there are handwritten parts
present and handles overwritten parts.

3.3 Architecture

Frontend Backend
~ N

GUI shOW§ «component» w ) ( «Dataclass»
Component A i (3 Zet

- = |_| loads J ,i L ﬁuses
Y @ i

«ViewModel» «Command» «ViewlLoader»

ZetView unpacks| getZet packs ZetViewlLoader

Fig. 3: Simplified overview of the main artefacts generated by MontiGem: (1) components
from GuiDSL models, (2) view-models from Aggregate models, (3) data-classes
from CD4A models.

Application Generator. Based on the provided models, MontiGem creates the complete
application infrastructure, the application’s backend, and frontend (Figure 2). It substitutes
parts of the otherwise handwritten code. Figure 3 shows a simplified overview of the
generated data structure and corresponding artifacts from the database up to the views.
The different areas in Figure 3 correspond to languages described in subsection 3.2. The
application is split into three parts. A thin frontend client, which provides a tailored view
of the underlying data structure. The application backend contains the business logic
and connects to the database. The system architecture enables to provide MaCoCo as a
web application. A 3-tier client-server architecture in combination with the Model View
View-Model (MVVM) pattern is applied to fit the requirements (section 2).

Persistence. MaCoCo’s persistence tier contains and manages all the user data and provides
general settings for all the instances. It is managed in a MySQL relational database



28 Gerasimov et. al

management systems (RDBMS) due to scalability purposes. The communication with the
backend is handled with Hibernate and fully generated by MontiGem.

Scaleability and Reuseability. Each component is wrapped inside a docker container
and kept stateless. This enables an easy version management for each of the software
components. For instance, the component related container can be easily updated and
restarted individually. Furthermore it is possible to have multiple backends and/or frontends
running at the same time and thus easily perform load-balancing.

4 Discussion

Until now, more than 140 instances of MaCoCo are deployed for chairs of RWTH Aachen
University. To answer the research question, model-driven development supports the main-
tainable [Zh13] co-development of frontend and backend written in different programming
languages by providing a generator framework which uses the same models to create
target code in several languages. Further detailed discussions and lessons learned about the
simultaneous development of the application and the generator can be found in [Ad19].

Maintainable model-driven development. As the resulting code is directly derived from
the provided models, the models themselves serve as an important part of the documentation
and are always up to date. Multiple generated parts are originated in a single predefined
structure (template) and can be easily changed collectively and thus reduce complexity.
An additional concern is the type preserving communication between server and client. In
our approach both, the data structure and communication endpoints on the frontend and
backend originate from the same models and thus are consistent-by-design. The resulting
(programing) languages can be switched by adapting templates and those templates can
be reused in similar projects. This improvement limits the number of possible errors.
Overall, the implementation based on a generative approach with usage of models written in
different languages allows for the separate development of application frontend and backend.
Furthermore, models represent independent components of the application and can be added
to extend the data structure or the user interface without affecting the current implementation
[JJ12; KoO08]. At the same time, dependencies across the entire code base are introduced as
a result and need to be carefully handled [Ad19]. The need to manually define behavior
results in dependencies between models and the hand-written code. MontiGem provides a
solution using class inheritance which is not always applicable. In this case, the code is
either completely generated or completely handwritten.

5 Conclusion

This paper shows the application of MDSE methods on a full-size real-world project:
Until now, more than 140 instances of MaCoCo are delivered for chairs of RWTH Aachen



Generated Enterprise Information Systems 29

University, proving scalability and validity of the presented concept. This paper shows
how to generate an enterprise information system which improves the maintainability of
software projects. We have applied MDSE methods to create this system with the generator
framework MontiGem which allows the maintainable co-development of frontend and
backend written in different programming languages. Now it is possible to describe a web
application with a small set of models. Only around 13% of the application’s backend and
30% of the frontend is handwritten (including the runtime environment), the other parts are
fully generated. With our approach, the end user benefits from fast handling of changes,
easy adaptability to new guidelines and quick implementation of feature requests. Changes
of the models are easily passed on to the source code and decrease development time. Our
approach can be easily adapted to other problem domains using a different set of models to
create a functional prototype with minimal manual effort.

References

[Ad18] Adam, K.; Netz, L.; Varga, S.; Michael, J.; Rumpe, B.; Heuser, P.; Letmathe, P.:
Model-Based Generation of Enterprise Information Systems. In (Fellmann, M.; Sand-
kuhl, K., eds.): Enterprise Modeling and Information Systems Architectures (EMISA’18).
Vol. 2097. CEUR Workshop Proceedings, CEUR-WS.org, pp. 75-79, 2018.

[Ad19] Adam, K.; Michael, J.; Netz, L.; Rumpe, B.; Varga, S.: Enterprise Information Systems
in Academia and Practice: Lessons learned from a MBSE Project. In: Digital Ecosystems
of the Future: Methods, Techniques and Applications (EMISA’19). LNI, (in press), 2019.

[Hal5] Haber, A.; Look, M.; Mir Seyed Nazari, P.; Navarro Perez, A.; Rumpe, B.; Volkel, S.;
Wortmann, A.: Integration of Heterogeneous Modeling Languages via Extensible and
Composable Language Components. In: Model-Driven Engineering and Software
Development Conference (MODELSWARD’15). SciTePress, pp. 19-31, 2015.

[HMOS] Hesse, W.; Mayr, H. C.: Modellierung in der Softwaretechnik: eine Bestandsaufnahme.
Informatik-Spektrum 31/5, pp. 377-393, 2008.

[HR17] Holldobler, K.; Rumpe, B.: MontiCore 5 Language Workbench Edition 2017. Shaker
Verlag, 2017.

[JJ12] Jia, X.; Jones, C.: AXIOM: A model-driven approach to cross-platform application
development. ICSOFT 2012 - Proceedings of the 7th International Conference on
Software Paradigm Trends/, pp. 24-33, Jan. 2012.

[Ko08] Koch, N.; Knapp, A.; Zhang, G.; Baumeister, H.: UML-Based Web Engineering: An
Approach based on Standards. In. Pp. 157-191, Jan. 2008.

[KRV10]  Krahn, H.; Rumpe, B.; Vdlkel, S.: MontiCore: a Framework for Compositional Devel-
opment of Domain Specific Languages. International Journal on Software Tools for
Technology Transfer (STTT) 12/5, pp. 353-372, Sept. 2010, 1ssn: 1433-2779.

[Ob17] Object Management Group: OMG Unified Modeling Language, V2.5.1, 2017.

[Rul6] Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer International,
2016.



30 Gerasimov et. al

[St73] Stachowiak, H.: Allgemeine Modelltheorie. Springer-Verlag, Wien, New York, 1973.

[V613] Volter, M.; Benz, S.; Dietrich, C.; Engelmann, B.; Helander, M.; Kats, L. C. L.; Visser, E.;
Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[Zh13] Zhang, F.; Mockus, A.; Zou, Y.; Khomh, F.; Hassan, A. E.: How Does Context Affect

the Distribution of Software Maintainability Metrics? In: IEEE Conf. on Software
Maintenance. Pp. 350-359, 2013.



	Motivation and Introduction
	The MaCoCo Project
	Approach
	Model-driven Software Engineering of Enterprise Information Systems
	Models in the development process
	Architecture

	Discussion
	Conclusion

