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Abstract. Test generation is an important issue when checking functional and 

nonfunctional requirements for components of distributed systems and formal 

models are utilized in order to derive test suites with guaranteed fault coverage, 

i.e., test suites which detect critical component faults. Finite transition systems 

are often used as such formal models and there are a number of methods for de-

riving complete test suites for Finite State Machines (FSMs) where each input 

is followed by an output. However, the FSM model is not always appropriate, 

as sequences of inputs can be applied before obtaining any output response or a 

sequence of output responses from a system under test, while this situation can 

be adequately handled using Input/Output (I/O) automata. When critical faults 

are enumerated, a test suite can be derived as a set of sequences distinguishing 

the specification I/O automaton from each considered mutant, and thus, tech-

niques for deriving sequences which distinguish two I/O automata have to be 

elaborated. There are different notions of distinguishability and in this paper, 

we consider a so-called (adaptive) separability relation. If two automata which 

possibly have the nondeterministic behavior are (adaptively) separable then 

they can be distinguished by applying a corresponding (adaptive) input se-

quence only once differently from the quasi-equivalence and quasi-reduction re-

lations where each test case has to be applied appropriate number of times un-

der the so-called “all weather conditions” assumption. In this paper, we intro-

duce the notion of a (adaptive) separating sequence for two I/O automata and 

propose a technique for deriving such a sequence for I/O automata of a special 

class where at each state, transitions under only inputs or under only outputs are 

specified. The length of a separating sequence if it exists is also briefly evaluat-

ed. 
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1 Introduction 

Deriving test suites with guaranteed fault coverage for various kinds of reactive dis-

crete and hybrid control systems is not possible without the use of formal models [1]. 

Transition systems with inputs and outputs are widely used for this purpose; such a 

transition system can be considered as a trace model that maps sequences of inputs 
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(input sequences) into sequences of outputs (output sequences). However, the re-

quirement to have an output after each input as it happens in Finite State Machines 

(FSMs) [2, 3] is very strict and in order to weaken the assumption, the researchers 

consider the model of an Input/Output (I/O) automaton where an output can occur 

only after a sequence of inputs and there can be a sequence of such outputs. When 

deriving test suites with guaranteed fault coverage under the ‘white box” testing as-

sumption, the distinguishability notion is very important. There has to be a possibility 

to distinguish fault-free and faulty components, and special distinguishing sequences 

are used for this purpose when using the active testing. Such distinguishing sequenc-

es, sometimes called distinguishing experiments, are well studied for deterministic 

complete FSMs but components under test are usually only partially specified while 

having a nondeterministic behavior. In this paper, we consider Input/Output (I/O) 

automata [4], define the notion of an (adaptive) separating sequence for two automata 

and propose a technique for deriving such a sequence (if it exists). Differently from 

other conformance / distinguishability relations, if such a sequence exists then two 

automata can be distinguished after applying the sequence only once and thus, such 

sequences can be very useful for mutation testing.  

The rest of the paper is structured as follows. Section 2 contains the preliminaries. 

In Section 3, the features of I/O automata are discussed for which an (adaptive) sepa-

rating sequence can be constructed using the well known FSM based methods; the 

length of such sequences is briefly evaluated when they exist. The conclusion presents 

some avenues for the future work. 

2 Preliminaries 

The section has the necessary definitions for trace models and the notion of a separat-

ing sequence for I/O automata is introduced. In this paper, a finite I/O automaton, 

automaton for short, is a 4-tuple S = (S, s0, I, O, hS) where S is a finite nonempty set 

of states with the designated initial state s0, I is a finite nonempty set of input actions 

while O is a finite nonempty set of output actions, I  O = , and hS   S  (I  O })  

S is a transition relation. There is a transition from state s to state s under action а if 

and only if the triple (s, а, s)  hS. The automaton is deterministic if at each state, 

there is at most one transition under each action. An automaton can be considered as a 

trace model where a trace is a sequence of actions of the alphabet I  O permissible at 

the initial state. When testing, only finite traces can be observed and correspondingly, 

we assume that the automaton has no cycles labeled only with output actions. Moreo-

ver, in order to avoid races at the automaton states, we consider automata where at 

each state either only inputs or only outputs are specified. In other words, in this pa-

per, an I/O automaton is a deterministic automaton S = (S, s0, I, O, hS), where S is 

partitioned into three pairwise disjoint sets S1, S2 and S3: at states of S1 only transitions 

under input actions are defined (and there exists at least one such transition), at states 

of S2 only transitions under output actions are defined (and there exists at least one 

such transition). At states of the set S3 there are no defined outgoing transitions, i.e., 

these states are deadlock states. In general, any of these sets can be empty. A trace at 

the initial state is complete if the trace takes the automaton to a state where no outputs 
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are defined. In order to be able to observe such traces a proper “silent output”   I  

O (quiescence) is added to the automaton [4], and thus at each state of the sets S1 and 

S3 a loop under  is added where  is considered as an output.  Correspondingly, the 

automaton S is obtained and  is a complete trace in S if and only if S has a trace  

sometimes called a -trace; the latter corresponds to the fact that after this trace none 

of outputs of O can appear. According to our assumptions, the automaton has no cy-

cles labeled only with outputs and thus, every automaton trace is a prefix of some 

complete trace.  

If the initial state of the automaton is in the set S1, the input i  I is strictly defined 

at the initial state if there is a defined transition at the initial state under this input. If 

the initial state of the automaton is in the set S2, the input i  I is strictly defined at the 

initial state if there is a defined transition under this input at each state reachable from 

the initial state under a trace where actions are labeled with outputs of O. A sequence 

i of inputs is strictly defined if  is strictly defined at the initial state and at each 

state that is reachable from the initial state via a complete trace with the projection , 

a transition under input i is defined. 

3 Separating Input/Output Automata 

Given I/O automata S = (S, s0, I, O, hS) and P = (P, p0, I, O, hP) of the considered set, 

S и P are called nonseparable if for each input sequence that is strictly defined at the 

initial states of S и P, the sets of output projections of complete traces with the input 

projection  of S и P are not disjoint. Otherwise, the automata are separable and an 

input sequence that is strictly defined at the initial states of S и P such that the sets of 

output projections of complete traces with the input projection  of S и P do not inter-

sect is a separating sequence for the automata. 

When distinguishing a faulty implementation P from the specification S, if S и P 

are separable then after applying a separating input sequence  to an automaton under 

experiment and observing a corresponding output response we could uniquely con-

clude which automaton is under experiment when the hypothesis of applying input 

sequences holds [6]. Before applying the next input the tester waits for an output until 

an appropriate timeout t is expired. In other words, the distinguishing experiment with 

a given automaton is performed as follows: the tester waits for an output until the 

timeout t expires; if a system under test produces an output then the timer is advanced 

from 0 and the tester waits for an output again until the timeout expires. If there is no 

output until the timeout t expires then we assume that the system produced the output 

. After this, the tester applies the next input (if any) under the above conditions. For 

an automaton of the considered class, an appropriate possibly partial and nondeter-

ministic Finite State Machine can be derived and the technique from [7] can be used 

for checking the separability of derived FSMs. 

Finite State machine or simply an FSM is a 5-tuple S = S, X, Y, hS, s0 where S is a 

finite nonempty set of states with the designated initial state s0, X and Y are finite 

nonempty alphabets, X  Y = , and hS  S  X  Y  S is a transition relation. There 

is a transition from state s  S to state s  S for an input/output pair x/y (xy) if and 
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only if (s, x, y, s)  hS. FSM S is observable, if for each two transitions (s, x, y, s), (s, 

x, y, s)  hS it holds that s = s. If FSM S is observable, x  X and y  Y, then state 

s is called the xy-successor of state s, if  (s, x, y, s)  hS. The set of all non-empty 

xy-successors of state s for all outputs y is the x-successor of state s. The notions of 

xy- and x-successors can be defined for a pair of different states s1 and s2, if an input x 

is a specified input at each of these states. In this case, the xy-successor is defined as a 

pair of xy-successors of these states. If xy-successors of these states coincide or the xy- 

successor exists only for one state of s1 и s2 then the xy-successor of the pair {s1, s2} is 

a corresponding singleton. The set of all non-empty xy-successors of the pair {s1, s2} 

is the x-successor of this state pair.  

In usual way, the transition relation is extended to input and output sequences. By 

default, for each state s  S the 4-tuple (s, , , s) is in the transition relation of S 

where  is the empty sequence. The extended transition relation is denoted by the 

same symbol hS. A sequence of input/output pairs which can be successively traversed 

starting from the initial state, is called an input/output sequence or a trace of the FSM 

(at the initial state). An input x is a defined input at state s if (s, x, y, s)  hS for some 

y and s. Input sequence х is a defined input sequence for the FSM if   is a defined 

input sequence at the initial state, and input х is defined at each state that is reachable 

from the initial state by a trace with the input projection . Two FSMs over the same 

input and output alphabets are separable, if there exists an input sequence  defined 

for each FSM such that the sets of traces with this input projection are disjoint. Oth-

erwise, the FSMs are non-separable. There are techniques how the separability rela-

tion can be checked for complete and partial, for observable and non-observable 

FSMs and these techniques can be used when checking whether two I/O automata are 

separable. Given an automaton S of the considered class, we construct possibly a 

nondeterministic FSM using a technique of the paper [6]. 

Algorithm 1 of deriving an FSM for a given automaton  

Input: a deterministic I/O automata S = (S, s0, I, O, hS), where S is the union of 

three pairwise disjoint sets S1, S2 и S3. 

Output: FSM MS that represents the set of traces of S. 

Construct FSM MS = (S1  S3, I  {null_in}, O  O2  …  Ons  {}, TMS), 

null_in  I, with the empty transition set, i.e. TMS = , where ns is the maximum 

length of a trace labeled only with outputs in S: 

- for each state s  S1 such that (s, i, s)  TS, s  S1  S3, add to TMS the transition 

(s, i, , s); 

- for each state s  S1, such that (s, i, s)  TS, s  S2, add to TMS the transition (s, 

i, o1 o2. . . ok, s), k  ns, where s  S1  S3 is the o1 o2. . . ok-successor of state s. 

If the initial state of the automaton S is in S2, then add to TMS the transition (s0, 

null_in, o1 o2. . . ok, s), where s  S1  S3 s  S1, and s is the non-empty o1 o2. . . ok- 

successor of state s0. If the initial state of the automaton S is in S3, then the FSM tran-

sition set TMS is empty, and thus, the set of FSM traces has only the empty sequence .  

 

By constructing the FSM MS, the following statements hold. 
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Proposition 1. Given a deterministic I/O automaton S of the considered class, if 

the initial state is in the set S1, then an input sequence  is strictly defined in S, if and 

only if  is a defined input sequence of the FSM MS. If the initial state of S is in the 

set S2, then an input sequence  is strictly defined in S if and only if the sequence 

null_in is a defined input sequence of the FSM MS.  

Proposition 2. Given a deterministic I/O automaton S  of the considered class, if at 

the initial state of the automaton is in the set S1 then the set of traces of S and FSM 

MS coincide. If at the initial state of the automaton is in the set S2 then for each trace  

of S there is the trace null_in in MS, and vice versa.  

Given two automata S and P of the considered class, corresponding FSMs MS and 

MР can be derived. As a corollary to Propositions 1 and 2, the following statement 

holds.  

Theorem 3. Automata S and P are separable if and only if FSMs MS и MР are sep-

arable. Moreover, if the initial states of S and P are states of S1 and P1, then a se-

quence  is a separating sequence for S and P if and only  is a separating sequence 

for MS and MР. If the initial states of MS and MР are states of S2 and P2 then a se-

quence  is a separating sequence of S and P, if and only null_in is a separating 

sequence for MS and MР.  If the initial states of MS and MР are states of S1 and P2, or 

S2 and P1, then the empty sequence is a separating sequence for automata S и P.  

When deriving a separating sequence for FSMs MS и MР we use a technique of the 

paper [7].  

Algorithm 2 for deriving a separating sequence for two observable possibly partial 

FSMs 

Input: two observable possibly partial FSMs MS и MР over input alphabet X 

Output: A separating sequence for MS и MР, if FSMs are separable, or the mes-

sage «The FSMs are non-separable»  

Step 1. Drive the intersection of MS and MР. If the intersection is complete then 

Return the message «The FSMs are non-separable». 

Step 2.  If the intersection of MS и MР is partial then derive a truncated successor 

tree for the initial state of the intersection. The root is labeled by the pair of the initial 

states; other nodes are labeled by subsets of states of the intersection. Let j levels of 

the tree, j  0, are already constructed and an intermediate (non-terminal) node of the 

jth level is labeled by a subset P of states of the intersection. There exists an outgoing 

edge from the node labeled with an input x to the node labeled with the set of x-

successors of states of P if x is defined at each state of each pair of P. A current node 

Current at the pth level, p  0, labeled by the set P is a leaf if and only if one of the 

below conditions holds. 

Rule 1:  

There exists an input x such that for each state (s, p) of P, x is a defined 

input at both states s and p and the non-empty x-successors are single-

tons. 
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Rule 2:  

There exists a node at the jth level, j < p, labeled with the set R such that 

P contains each pair of different states of the set R. 

Step 3.   

If there is no leaf obtained by applying Rule 1 then the FSMs are not 

separable. Return the message «The FSMs are non-separable».  

If there exists a leaf obtained by applying Rule 1, i.e. there exists an 

input x such that for each state (s, p) of P, x is defined at both states s 

and p and the non-empty successors of (s, p) are singletons, then the 

input sequence  x is a separating sequence for FSMs MS and MР 

where sequence  labels the path to this leaf. Return the sequence 

x.  

 

Notice that if a truncated successor tree is completely derived or a width tree 

search is used when using Algorithm 2 then for separable FSMs MS and MР a shortest 

separating sequence can be derived. 

Therefore, the following technique for checking whether two automata are separa-

ble can be proposed. 

Algorithm 3 for checking whether two automata are separable and deriving a sepa-

rating sequence when they are separable 

Input: Input/ Output automata S and P  

Output: A separating sequence  or the message «The automata S and P are non-

separable» 

Step 1. If the initial state of S (Р) is in the set S1  S3 (Р1  Р3), while the initial 

state of Р (S) is in S2 (Р2), then the empty sequence separates automata S  and P. If 

the initial state of S (Р) is in S3 (Р3), while the initial state of Р (S) is in S1 (Р1), then 

Return he message «The automata are non-separable» 

Step 2. Let the initial states of S and P be in the sets S1  S3 and Р1  Р3 or S2 and 

Р2. Call Algorithm 1 to derive FSMs MS and MP. 

Step 3. Call Algorithm 2 to check if there exists a separating sequence for FSMs 

MS and MP. If FSMs MS and MP are not separable then Return he message «The 

automata are non-separable». 

If there exists a separating sequence for FSMs MS и MР then Return , if  is 

headed by an input of alphabet X. If  = null_in , then Return .  

 

Example. Consider automata S and P in Figs. 1a and 2a with the initial states s1 

and p1, and corresponding FSMs MS и MР in Figs. 1b and 2b.  
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(a)      (b) 

Fig. 1. Automaton S  (a) and  FSM MS (b). 

 

 
(a)           (b) 

Fig. 2. Automaton P  (a) and  FSM MP (b). 

 

Algorithm 2 returns a separating sequence and a frame of a corresponding succes-

sor tree is shown in Fig. 3.  

For states of the pair (s2, p3) in Fig. 3, input i2 is not defined and thus, at this state 

we have only a transition labeled with input i1. States s5 and p5 and states s2 and p6 

can be separated by the input i1 that is defined at each of these states, and thus, an 

input sequence i1 i1 i1 is a separating sequence for automata S and P. 
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Fig. 3. A frame of a corresponding successor tree for FSMs in Figs. 1b and 2b. 

 

Evaluating the length of a separating sequence. For complete observable FSMs the 

tight lower bound on the length of a shortest separating sequence with respect to the 

number of FSMs’ states is known [8]. This bound equals 2mn-1 when FSMs MS and 

MР have m and n states. Correspondingly the length of a separating sequence for au-

tomata S и P which have m и n states in the sets S1  S3 и Р1  Р3 is not bigger than 

this value. In order to check if this bound is tight additional investigations are needed. 

However, in the paper [9], we show that for any k  3 и n > 1, there exist determinis-

tic input complete automata Sk with k states and An with states, (2k – 4) inputs and k 

outputs such that the length of a shortest separating sequence equals to (n–1)2k–2 + 1 = 

О(n2k). 

If automata S и Р have the above features but can be nondeterministic then the cor-

responding FSMs MS и MР can be non-observable. In the paper [7], a technique is 

proposed how to deal with non-observable FSMs when checking their separability: in 

this case, the notion of an xy-successor of a state should be modified since now it is 

not always a singleton. That technique is also based on using subsets of states and 

thus, an expected lower bound seems to coincide with that for observable FSMs; 

however, more research is needed in this direction.  

Another interesting question is related to the adaptive separability (distinguishabil-

ity). An adaptive separating sequence is represented by a so-called test case that is an 

acyclic FSM and there are techniques how such test cases can be derived [8]. Given 

two FSMs MS and MР over an input alphabet X and an output alphabet Y, a test case 

TC(X, Y) that represents an adaptive input sequence is an initially connected observa-

ble initialized FSM TC that has an acyclic transition graph and where at each state, at 

most one input is defined with all possible outputs. The length of the test case TC is 

the length of a longest trace from the initial state to a deadlock state and it is the 

length of the longest input sequence that can be applied to an FSM under investiga-

tion. A test case TC a separating (distinguishing) test case for observable FSMs 

MS and MР if (1) the initial state of TC is the pair of the initial states of MS and MР, 
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(2) for each trace  = xkyk of TC from the initial state to a deadlock state,  is a trace 

at the initial states of MS and MР, (3) ik is a defined input at the -successors of the 

initial states of MS and MР and (4) every such trace  is a trace at most at one initial 

state of MS or MР. In this case, an adaptive separating sequence for MS and MР is 

represented by such a test case. If such a test case does not exist for FSMs MS and MР, 

then machines MS and MР are (adaptively) non-separable (indistinguishable). For two 

observable possibly partial machines with n and m states the length of a shortest adap-

tive separating sequence is at most nm [10]. Given automata S and P of the consid-

ered class where the sets S1 and P1 have n and m states correspondingly, the FSMs 

MS and MР have the same number of states and thus, the length of an adaptive sepa-

rating sequence (if it exists) does not exceed nm. Therefore, adaptive separating se-

quences could be more efficient when deriving tests for complex systems under the 

‘white box’ assumption. 

4 Conclusions 

In this paper, we study the (adaptive) distinguishability relation for Input/Output au-

tomata of a special class which often are used as specifications for complex control 

systems. When deriving tests some mutations are injected into the specification and 

when testing, such mutations have to be detected. When each pair “specification, 

mutant” has an (adaptive) separating sequence there is no need for assuming the all 

weather conditions and thus, each test case is applied only once. On the other hand, 

this affects the length of a separating sequence and in the future, we plan to study 

other distinguishability relations for I/O automata of the considered class as well as 

the extensions of this class. 
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