

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Method of Paradigmatic Analysis of Programming

Languages and Systems

Lidia Gorodnyaya1,2[0000-0002-4639-9032]

1 A.P. Ershov Institute of Informatics Systems (IIS), 6, Acad. Lavrentjev pr., Novosibirsk

630090, Russia

2 Novosibirsk State University, Pirogov str., 2, Novosibirsk 630090, Russia

lidvas@gmail.com

Abstract. The purpose of the article is to describe the method of comparison of

programming languages, convenient for assessing the expressive power of

languages and the complexity of the programming systems. The method is

adapted to substantiate practical, objective criteria of program decomposition,

which can be considered as an approach to solving the problem of factorization

of very complicated definitions of programming languages and their support

systems. In addition, the article presents the results of the analysis of the most

well-known programming paradigms and outlines an approach to navigation in

the modern expanding space of programming languages, based on the

classification of paradigms on the peculiarities of problem statements and

semantic characteristics of programming languages and systems with an

emphasis on the criteria for the quality of programs and priorities in decision-

making in their implementation. The proposed method can be used to assess the

complexity of programming, especially if supplemented by dividing the

requirements of setting tasks in the fields of application into academic and

industrial, and by the level of knowledge into clear, developed and complicated

difficult to certify requirements.

Keywords: Definition of Programming Languages, Programming Paradigms,

Definition Decomposition Criteria, Semantic Systems

1 Introduction

Descriptions of modern programming languages (PL) usually contain a list of 5-10

predecessors and a number of programming paradigms (PP) supported by the

language [1,2]. In this article the method of representation of paradigms features of

PL definition at the level of semantic systems is considered [3]. Using the method of

paradigms analysis it is possible to build a space of constructions supported in the

definitions of programming languages and systems (PLS). This space can be the

source structure in the selection of criteria of decomposition programs based on the

development of statements of problems in the programming process of their solutions

[4], a variety of types of semantic systems of PL and their extensions in the

150

implementation of programming systems (PS) [5]. The technique is shown on the

material of four classical programming paradigms without an excursion into the wider

space of paradigms, especially new ones, which have not yet received support in well-

known programming languages and recognition in the form of examples of debugged

programs. The analysis of DSL—languages, which it makes sense to consider as a

new meta-level in the field of programming linguistics, is left for the future.
The concept of "programming paradigm" does not have a strict definition, so the

question arises about the belonging of new approaches in programming to the set of

PP and the ordering of such a set. Programming paradigm is manifested as the way of

thinking associated with the compromise between the characteristics of tasks,

methods of their solution in the form of programs, quality criteria of programs

adopted in PP and decision-making priorities in the programming process. Such

feature of PP allows to understand a paradigm choice as process of acceptance,

representation and debugging of decisions at statement of different tasks therefore it is

natural to carry out systematization of PP on comparison with priorities and variations

of schemes of statement of tasks and methods of their decision.

The most clear systematization of PP now allows to allocate the basic and

derivative PPs supplemented by combined, auxiliary and system-forming or

perspective-strategic. It should be noted that academician Andrei Petrovich Ershov

was focused on strategic PPs, including fundamental, educational and technological.

The set of basic PPs can be divided into basic, instrumentally expanding and

unlimited depending on the content of semantic systems of computing organization,

memory management, computation management and construction of complex data.

2 Results of Paradigm Analysis

Analysis and comparison of a large number of PL of different levels allow to identify

the most significant characteristics for the expression of paradigm specificity of a

wide class of PL (Table 1). 1

1 The listings in Table 1 and in Table 2 are based on open sources such as Wikipedia

and study guides. Lists can be replenished and updated by specialists.

151

Table 1. PL twenty-first century (all multi-paradigm)

2Year PL Predecessors Used paradigms

2018 Dart

Java,

JavaScript,

CoffeeScript,

Go

object-oriented

web application framework

script language

imperative

reflective

functional

2014 Swift

Objective-C, C++, Java,

Rust, Scala, Python,

Ruby, Smalltalk,

Groovy, D, LLVM

protocol-oriented

object-oriented

functional

imperative

2012 Rust

Alef, C++, Camlp4,

Common Lisp, Erlang, Haskell,

Hermes, Limbo, Napier, Napier88,

Scheme, Newsqueak, NIL, Sather,

OCaml, Standard ML, Cyclone,

Swift, C#, Ruby

parallel

functional

imperative

structural

systemic

procedural

free software

2005 F#

OCaml,

C#,

Haskell

functional

object-oriented

generalized

imperative

2003 Scala

Java, Haskell, Erlang, Lisp, Standard

ML, OCaml, Smalltalk, Scheme,

Algol68

functional

object-oriented

imperative

2001 D

C, C++, C#,

Python, Ruby,

Java, Eiffel

imperative

object-oriented

functional

contractual

generalized

procedural

2000 C#

C++,

Java

Delphi,

Modula-3

Smalltalk

object-oriented

generalized

procedural

functional

event-driven

reflective

The multiparadigmality of long-lived and new PLs shows the need for more precise

detailing of the dependencies between old and new ones. (Table 2).

2 Saved vocabulary sources.

https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/JavaScript
https://ru.wikipedia.org/wiki/CoffeeScript
https://ru.wikipedia.org/wiki/Go
https://ru.wikipedia.org/wiki/Objective-C
https://ru.wikipedia.org/wiki/C%2B%2B
https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/Rust_(язык_программирования)
https://ru.wikipedia.org/wiki/Scala_(язык_программирования)
https://ru.wikipedia.org/wiki/Python
https://ru.wikipedia.org/wiki/Ruby
https://ru.wikipedia.org/wiki/Smalltalk
https://ru.wikipedia.org/wiki/Groovy
https://ru.wikipedia.org/wiki/D_(язык_программирования)
https://ru.wikipedia.org/w/index.php?title=Alef_(язык_программирования)&action=edit&redlink=1
https://ru.wikipedia.org/wiki/C%2B%2B
https://ru.wikipedia.org/w/index.php?title=Camlp4&action=edit&redlink=1
https://ru.wikipedia.org/wiki/Common_Lisp
https://ru.wikipedia.org/wiki/Erlang
https://ru.wikipedia.org/wiki/Haskell
https://ru.wikipedia.org/w/index.php?title=Hermes_(язык_программирования)&action=edit&redlink=1
https://ru.wikipedia.org/wiki/Limbo
https://ru.wikipedia.org/w/index.php?title=Napier88&action=edit&redlink=1
https://ru.wikipedia.org/wiki/Scheme
https://ru.wikipedia.org/w/index.php?title=Newsqueak&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=Sather&action=edit&redlink=1
https://ru.wikipedia.org/wiki/OCaml
https://ru.wikipedia.org/wiki/Standard_ML
https://ru.wikipedia.org/wiki/Standard_ML
https://ru.wikipedia.org/wiki/Cyclone_(язык_программирования)
https://ru.wikipedia.org/wiki/Swift_(язык_программирования)
https://ru.wikipedia.org/wiki/C_Sharp
https://ru.wikipedia.org/wiki/Objective_Caml
https://ru.wikipedia.org/wiki/C_Sharp
https://ru.wikipedia.org/wiki/Haskell
https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/Haskell
https://ru.wikipedia.org/wiki/Erlang
https://ru.wikipedia.org/wiki/Lisp
https://ru.wikipedia.org/wiki/Standard_ML
https://ru.wikipedia.org/wiki/Standard_ML
https://ru.wikipedia.org/wiki/Objective_Caml
https://ru.wikipedia.org/wiki/Smalltalk
https://ru.wikipedia.org/wiki/Scheme
https://ru.wikipedia.org/wiki/Алгол_68
https://ru.wikipedia.org/wiki/C%2B%2B
https://ru.wikipedia.org/wiki/C_Sharp
https://ru.wikipedia.org/wiki/Python
https://ru.wikipedia.org/wiki/Ruby
https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/C%2B%2B
https://ru.wikipedia.org/wiki/Java
https://ru.wikipedia.org/wiki/Delphi_(язык_программирования)
https://ru.wikipedia.org/wiki/Модула-3
https://ru.wikipedia.org/wiki/Smalltalk

152

Table 2. PL - the founders of the basic programming paradigms 3

Year PL Used paradigms Sphere of influence
41954

1958

Fortran,

Algol-60

imperative

parallel

procedural

modular

structural

procedural

generalized

object oriented

IPP

ALGOL 58,

BASIC,

C,

Chapel, CMS-2, Fortress,

PL/I,

PACT I,

MUMPS, IDL, Ratfor

1958 Lisp

experimental

functional

object oriented

procedural

reflective

metaprogramming

FP

CLIPS, Common lisp, CLOS, Clu, Dylan,

Forth, Scheme, Erlang, Haskell, Logo, Lua,

Perl, POP-2, Python, Ruby, Cmucl, Scala,

ML, Swift, Smalltalk, Factor, Clojure, Emacs

Lisp, Eulisp, ISLISP, Wolfram Language

1960 APL

vector
functional

structural

modular

PC
A, A+,

FP, J, K, LyaPAS, Nial, S,

MATLAB, PPL, Wolfram Language

1962 Simula 67 object oriented OOP (1980)
561968 Forth

imperative

stack oriented

Factor, RPL, REBOL, PostScript, Factor and

other concatenative languages
71968 Algol-68

parallel

imperative

C, C++, Bourne shell, KornShell, Bash,

Steelman, Ada, Python, Seed7, Mary, S3

1972 Prolog

declarative

logical

LP

Visual Prolog, Mercury, Oz,

Erlang, Strand, KL0, KL1, Datalog

1970 Pascal

imperative

structural

SP

Ada, Component Pascal, Modula-2, Java, Go,

Oberon, Object Pascal, Oxygene, Seed7, VHD,

Structured text

3 IPP – imperative-procedural, FP – functional, PC – parallel calculation OOP – object

oriented , LP – logical, SP – structural programming.
4 Algol-60 – it was from this language in our country that acquaintance with high-level

languages began, its dominance was pushed back by the appearance of Fortran language

implementations.
5 Forth – a typical mechanism for implementing work with expressions in different Pls.
6 The languages in which programs are built as concatenations of functions.
7 Algol-68 represents the result of well-thought-out unification and orthogonalization of

basic programming concepts.

https://en.wikipedia.org/wiki/ALGOL_58
https://en.wikipedia.org/wiki/BASIC
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Chapel_(programming_language)
https://en.wikipedia.org/wiki/CMS-2_(programming_language)
https://en.wikipedia.org/wiki/Fortress_(programming_language)
https://en.wikipedia.org/wiki/PL/I
https://en.wikipedia.org/wiki/PACT_I
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/IDL_(programming_language)
https://en.wikipedia.org/wiki/Ratfor
https://en.wikipedia.org/wiki/CLIPS
https://ru.wikipedia.org/wiki/Erlang
https://ru.wikipedia.org/wiki/Factor_(язык_программирования)
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Emacs_Lisp
https://en.wikipedia.org/wiki/Wolfram_Language
https://en.wikipedia.org/wiki/Wolfram_Language
https://en.wikipedia.org/wiki/Factor_(programming_language)
https://en.wikipedia.org/wiki/RPL_(programming_language)
https://en.wikipedia.org/wiki/REBOL
https://ru.wikipedia.org/wiki/PostScript
https://ru.wikipedia.org/wiki/Factor_(язык_программирования)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/KornShell
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://en.wikipedia.org/wiki/Steelman_language_requirements
https://en.wikipedia.org/wiki/Ada_programming_language
https://en.wikipedia.org/wiki/Seed7
https://en.wikipedia.org/wiki/Mary_(programming_language)
https://en.wikipedia.org/wiki/S3_(programming_language)
https://ru.wikipedia.org/wiki/Visual_Prolog
https://ru.wikipedia.org/wiki/Mercury_(язык_программирования)
https://ru.wikipedia.org/wiki/Oz_(язык_программирования)
https://ru.wikipedia.org/wiki/Erlang
https://ru.wikipedia.org/w/index.php?title=Strand&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=KL0&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=KL1&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=Datalog&action=edit&redlink=1
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/Modula
https://en.wikipedia.org/wiki/Modula
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Oberon_(programming_language)
https://en.wikipedia.org/wiki/Oxygene_(programming_language)
https://en.wikipedia.org/wiki/Seed7
https://en.wikipedia.org/wiki/VHDL
https://en.wikipedia.org/wiki/Structured_text

153

The programming paradigm as a way of thinking is associated with a compromise

between the features of the tasks being solved and the methods for solving them using

programs. The most objective programming concepts are associated with architectural

models, with methods for implementing a joint projects, and with the classification of

problems to be solved. To show the features of software, it is convenient to single out

conceptual monoparadigmal languages, models or sublanguages and provide criteria

for the successful use of software with evaluating the results using examples of

programs that was confirmed by programming practice. [5]. From the vast set, a small

number of PLs can be distinguished, attracting attention with interesting combinations

of visual means and semantics that affect the development of the main PPs.

3 Semantic Systems of Basic Paradigms

Considering the systematization of the paradigmatic features of the definition of PL at

the level of semantic systems [3], it is convenient to classify language concepts by

statement of tasks and language tools used to solve them. Even in last times, Nicholas

Wirth noted the importance of matching the problem statement and the tools used to

solve it, especially if you can catch the likeness of the processed data structures and

their processing algorithms, which is now called homoiconicity. Based on this

correspondence, it is possible to build a space of constructions supported in the

definitions of PSL and compared with the complexity of the formulations of

successfully solved problems. The resulting space can be the initial structure when

choosing criteria for decomposing programs, taking into account the peculiarities of

the development of problem statements in the process of programming their solutions

[4], expanding the semantic systems of PL and their refinement when implementing

PS [5].

When considering any semantic systems, it is important to do noted the difference

in the nature of the performance of the functions of such systems in different

complexes. So, for any data set D representing values of arbitrary nature, function

schemes F are realistically distinguishable for calculation methods, memory access

tools M, control features of computing C and communication, or reversible

complexation and structuring of data S. This leads to an idea of the main categories of

semantic systems for differently implemented types of functions. Historically, at the

hardware level, such categories of semantic systems have had a cumulative effects in

the “DEMCS” order – the representation of numbers, an arithmometer, a calculator

with registers, an analog analizer with control system, a computer. Each hardware

subsystem can interact with each other (Table 3).

Table 3. A number of categories of semantic systems of hardware level.

Subsystem Note

D: data Data from set D represents values from V and the interrupt scale

E: evaluation Operations on two or one value produce one or two values

M: memory The correspondence between addresses from the set N and

154

 representations from the set D stored values at these addresses

allows different methods for accessing memory elements,

including replacing stored values, with the exception of address 0.

C: control Comparing values with zero allows you to control the progress of

calculations along with go by labels and interrupt handling, not

counting the transition in order

S:

communications

The construction of complex data takes into account the

capabilities of addressing commands in memory

Programming paradigms can be distinguished by the priorities of the categories of

semantic systems in the programming process, noting the paradigm differences in the

general concepts in each category (See Tables 4-7). Data are addresses and stored
values in IPP, stored methods and object signatures appear in the OOP, be
binding with any value in the FP instead of addresses in memory, and to the
identifier in the LP. In IPP and OOP, operations are mostly unary or binary, and in

FP and PL there is also arbitrary arity. True values in LP include the special value

“ESC”, which allows to distinguish normal predicate values from failure in

calculations, and FP can use any value other than “NIL” as truth. Data structures in

the IPP can not be considered as values processed by the basic means, and in the FP

such structures are processed without special restrictions.

When preparing an imperative-procedural program, the most important are the

means of working with memory in which data and the results of their processing are

placed. Data processing is considered as a change in memory states when performing

calculations. If necessary, data structures can be organized (Table 4).

Table 4. Paradigmatic scale of IPP semantics.

Subsystem Note

D: data

Values are limited by the size of their representations in memory

registers at addresses from N. The interrupt vector is not

represented.

E: evaluation Operations differ on unary and binary with single result.

M: memory

Work with memory without emphasis on the zero, a methods

variety for accessing memory and interrupts handling.

C: control In addition to hardware comparison of values with zero, when

controlling the course of calculations, operation priorities and

parentheses in expressions are used along with transfers by labels,

but without interrupt handling.

S: communications You can design complex data and select its elements using the

capabilities of in-memory indexing instructions

The focus of FP is the organization of calculations on symbolic representations of the

entities of a given subject area. Working with memory in this case may not require

binding to physical addresses, but rather confine itself to the representation of an

associating function over data pairs of any nature. The control of the computation

155

process can be considered as a function of program fragments. The construction of

complex objects is free from the of elements neighborhood (Table 5).

Table 5. Paradigmatic scale of FP semantics.

Subsystem Note

D: data Representations of data are not limited in size and complexity

E: evaluation Some operations can process any number of parameters and

produce a series of values, if necessary combined into a complex

given

M: memory

When processing complex data, the old values are not changed,

and the new values are located in memory independently, and the

correspondence between the associated data is stored in memory,

allowing a change in association

C: control Any calculation can be blocked or run. A program may contain

branch points from an arbitrary number of branches selected by

comparing the result with a “zero” (NIL), which is included in

the set of values

S: communications It is possible to construct arbitrarily complex, equitable with

elementary, data, all elements of which are accessible using

functions in any expression

In the case of LP, the logic of non-deterministic search for feasible solutions

dominates. Variants of possible solutions are being choose. Fragments with a fixed

number of parameters are named. As structures, samples are used to control the

choice of variants (Table 6).

Table 6. Paradigmatic scale of LP semantics.

Subsystem Note

D: data Representations of facts or rules

E: evaluation Attempts at a calculation that yields either a result or a signal of

impracticability, which leads to further search for variants

M: memory

Some rules may have names with indicating the number of

parameters, which allows them to be used as functions

C: control Non-deterministic search for choosing a feasible variants giving a

result other than “ESC”

S: communications Comparison of complex data with a example allows you to select

elements for choosing a branch

For object-oriented programming, it all starts with defining a hierarchy of classes of

objects placed at fixed addresses in memory. The management of the data processing

process uses a comparison of classes and valid methods, labeled with access rights

from different parts of the program. Computations occur only upon successful

matching and matching of access rights to objects. A detailed analysis of the

156

semantics of OOP was performed in [5] and was accompanied by comparison with

other software and partial formalization of the main mechanisms (Table 7).

Table 7. Paradigmatic scale of OOP semantics.

Subsystem Note

D: data Data represents not only values, but also methods for processing

them.

E: evaluation Any operations, as well as any calculations, can be overloaded

by adding the processing of possible interrupts

M: memory

Dosed access to elements of objects is accompanied by

mechanisms of implicit situation handlers, and addresses can be

values

C: control The feasibility of methods on objects is determined by checking

their compatibility and access rights in the class hierarchy

S: communications Object classes are adapted for additional definition and

inheritance according to the class hierarchy

Thus, in addition to preferences on the features of the problem statements, one

can see differences in the schemes for determining functions for different categories

of semantic systems depending on the software. It should be noted that the transition

from PL to PS is usually accompanied by an increase in the number of supported PPs,

which, when defining the Haskell language, led to the concept of “monad”, which

allows any PL to achieve practicality, which is usually done with the help of library

modules.

Description of derivative PPs can be made relative and, therefore, more concise,

expressing the difference with the basic paradigm. We can say that the derivative

paradigm is a projection of the basic paradigm on the features of the problem

statements of a certain application area. Usually in the projection the most important

elements of paradigms are modified. Variations of the models of semantic systems

that support derivative paradigms can be used as objective parameters in factorizing

the definitions of languages and programming systems and decomposing programs,

starting with taking into account the peculiarities of problem statements.

For practice, it is useful to describe the derivatives of PP relative, expressing the

difference with the base PP. So, IPP derivatives distinguish different methods of

representing data in memory and organizing sequential processes generated by the

program, OOP derivatives give various concretizations of the concept of “class of

objects”, FP derivatives represent variations in the methods of organizing

calculations, and LP derivatives may use different approaches to mitigate the

dependence of obtaining results on excessive or insufficient determinism.

In addition to the relatively clear classical basic paradigms of programming, there

is reason to single out the main expanding system-instrumental paradigms aimed at

the preparation and design of programs, operating systems and databases, support for

working with files and various device configurations, as well as providing feedback

when executing any programs. All expanding paradigms, some of them have not yet

received their names, work with much more complex elements that have their own

157

lives, which can be included in many systems and configurations in which their state

can be changed. Data representations, in addition to complex data structures, formal

definitions and codes, include processes, devices, roles of participants and complexes.

The methods of processing elements and their interactions are subject to more

stringent requirements of correctness, which entails supporting the improvement of

elements in parts, that is, targeted development as errors are identified or the need for

increased efficiency. There is a division of labor according to skill level and

responsibility.

No less noticeable is the group of unlimited communication interface paradigms

supporting large data processing (bigdata, sematic-web, rdf), remote work in

networks, service-oriented programming based on markup and rewriting languages

(html, XML, PHP), parallel, vector-oriented for processing arrays (APL) or

supporting multiple theoretical insertion mechanisms, including dynamic insertion

substitutions (SETL) and high-performance computing on supercomputers (OpenMP,

mpC) and mobile devices.

There is a noticeable number of combined PPs that combine the advantages of a

pair of PPs for solving different types of subproblems, which also are supported by

multi-paradigmal PLs (Lisp 1.5, Planner, Merlin, F #, C #, Scala, etc.). There are

rejected PPs that have not received recognition by the programming community, and

esoteric PPs, the invention of which can be considered as a study the possibilities to

represent and recognize information in the style of creating and decoding puzzles.

Any programming paradigm can be supplemented with additional forms, such as

declarativeness, abstractions, specification languages, etc., mainly solving problems

such as “scaffolding,” that is, the aim of these forms is not an alternative or opposed

representation of programming tools and methods, but temporary structure which

used to support setting the boundaries of the behavior of programs, highlighting the

processes that are convenient for practice.

4 Conclusions and Outlook

The proposed methodology can be used to assess the complexity and complexity of

programming, especially if supplemented by dividing the requirements for setting

tasks in the fields of application into academic and industrial, and by the level of

knowledge into clear, developed and complicated difficult to certify requirements.

Basic programming paradigms can be distinguished by ordering the main

categories of semantic systems, and derivatives - by the difference between individual

categories of semantic systems from the basic paradigm. Any programming paradigm

can be enriched with additional paradigms for representing restrictive conditions for

the functioning of programs. For this reason, they cannot be opposed to the actual PP.

The statements of the problems of parallel computing take into account that the

speed of obtaining results on the available programs for solving a specific problem is

insufficient. Paradigms of this direction are in the process of formation. Given the

diversity of theoretical models in this area, it is natural to assume that there will be

many such paradigms. There is reason to single out software aimed at providing

158

feedback when working with devices and networks, on the surface-interface style of

IT, and on supporting supercomputer processes.

In recent years, reasons have been discovered and understood for conditioning

program verification by formalizing the programming paradigms used. Programming

projects should be accompanied by a justification for the choice of not only software

tools, but also paradigms in order to avoid inter-paradigm conflicts, fraught with

subtle errors associated with changing and developing the functioning environment of

long-lived programmable components.

DSL languages deserve special consideration as a new level of languages creation.

If in ordinary PLs, the accumulation of programming experience is performed in the

form of procedures, then DSL is the mechanism for accumulating experience in the

form of languages.

The works of E. M. Lavrishcheva [7], Peter Van Roy [8] and Peter Wegner [6]

should be mentioned as related works. E.M. Lavrishcheva presented a fairly complete

overview of programming paradigms that is relevant for programming technologies

[7], P. Van Roy analyzed more than 30 paradigms, mainly combined, and presented a

diagram of their interconnections cited in Wikipedia [8], and P. Wegner performed a

very serious analysis of OOP, methods for supporting this paradigm, and its

comparison with other classical PPs [6].

This work was partially supported by the Russian Foundation for Basic Research,

project No. 18-07-01048-а.

References

1. Diagramma, predstavlyayushchaya khronologiyu poyavleniya i nasledovaniya mnogikh

YAP, https://www.levenez.com/lang/, . last accessed 2019/11/21.

2. Sayt s opisaniyami 171 yazyka i 31 paradigmy, http://progopedia.ru/, last accessed

2019/11/21.
3. Lavrov, S.S.: Metody zadaniya semantiki yazykov programmirovaniya.

Programmirovaniye 6, pp. 3–10 (1978).

4. Bentley, D.: Zhemchuzhiny tvorchestva programmistov. Radio i svyaz', Moscow (1990).

5. Gorodnyaya, L.: On the Presentation of the Results of the Analysis of Programming

Languages and Systems. In: CEUR Workshop Proceedings, vol. 2260, pp. 152-166 (2018).

6. Wegner, P.: Concepts and paradigms of object-oriented programming. SIGPLAN OOPS

Mess 1(1, August), pp. 7–87 (1990), http://dx.doi.org/10.1145/.
7. Lavrishcheva, E.M.: Programmnaya inzheneriya i tekhnologii programmirovaniya

slozhnykh sistem. Moscow (2018).

8. Van Roy, P.: Diagramma s rezul'tatami sravneniya boleye 30-ti paradigm

programmirovaniya, https://www.info.ucl.ac.be/~pvr/ paradigmsDIAGRAMeng108.pdf,

last accessed 2019/11/21.

https://www.levenez.com/lang/
http://progopedia.ru/
http://dx.doi.org/10.1145/
https://www.info.ucl.ac.be/~pvr/%20paradigmsDIAGRAMeng108.pdf

