

Copyright © 2020 for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Building Subject Domain Ontology for a Corporate

Web Application

A. Gusenkov1[0000-0003-4019-7322], N. Bukharaev2[0000-0002-4997-2121] and E. Birialtsev3[0000-

0002-5193-8627]

1,2 Kazan Federal University, Kazan, Russia
3 Institute of Applied Research of the Academy of Sciences of the Republic of Tatarstan, Ka-

zan, Russia
1gusenkov.a.m@gmail.com, 2boukharay@gmail.com, 3igenbir@yandex.ru

Abstract. The technology of automated construction of the subject domain on-

tology, based on information extracted from the comments of the TATNEFT oil

company relational databases, is considered. The technology is based on build-

ing a converter (compiler) translating the logical data model of Epicenter Pe-

trotechnical Open Software Corporation (POSC), presented in the form of ER

diagrams and a set of the EXPRESS object-oriented language descriptions, into

the OWL ontology description language, recommended by the W3C consorti-

um. The basic syntactic and semantic aspects of the transformation are de-

scribed.

Keywords: Subject Domain Ontology, Relational Databases, POSC, OWL

1 Introduction

Creating of an ontology, i.e. formal model of semantics of some subject domain usu-

ally is an extremely laborious process. It requires participation of highly qualified

specialists both in the specific subject field and in the field of computer linguistics.

One of the methods widely used here is the conceptualization technique [1]. Using it,

we actually build an object model of some subdomain of the real world by defining

objects, their attributes and relationships. A similar technique for basic entities and

relationships extraction is used to define logical models in the relational databases

design [2]. The methodological proximity of the techniques used in the ontologies and

database models development suggests possibility to use already existing logical da-

tabase models as a formalized prototype of the subject domain ontology.

In the article such technique for automated construction of the subject domain on-

tology from its relational model is described on the real world example of develop-

ment of an intelligent search system for a large oil producing company.

If at all possible, the most natural way to select a prototype of the ontology is to

choose one among the logical models of the subject area, having an industry standard

status. In our case the most evident choice was the Epicentre data model of the Pe-

trotechnical Open Software Corporation (POSC [3]). It is presented in the form of

http://orcid.org/0000-0002-5193-8627
http://orcid.org/0000-0002-5193-8627
mailto:gusenkov.a.m@gmail.com
mailto:e-mail,
mailto:e-mail,

160

ER-diagrams [2] considered together with the set of text files in the EXPRESS object-

oriented language (ISO 10303, part 11). The definition also has visual presentation

focused on the effective generation of database structures according to its logical

model by IT specialists.

To describe the ontology, the Web Ontology Language (OWL) [4, 5], developed

by the Semantic Web Activity working group and recommended by the W3C interna-

tional consortium [6], was chosen. With the prospect of further move towards a logi-

cal inference system development, the actual implementation of the ontology was

performed in the OWL DL language dialect, corresponding to the rules of descriptive

logic. The article describes the scheme for converting the Epicentre logical model into

the OWL DL language, which apart the industry-wide standards also takes into ac-

count the local specifics of the Tatneft oil and gas company.

2 Epicentre Model

The Epicentre data model defines over 1000 real-world technical and business con-

cepts related to the oil exploration and production. In the terminology of POSC data

modeling the corresponding objects are called entities. The model defines also charac-

teristics of entities called attributes. The most important of these are attributes defin-

ing relationships between entities.

Here one of the important architectural principles is distinction between definitions

of objects, object properties and types of activities. Such separation meets practical

requirements, as in fact object properties may have multiple versions of description.

Thus each property can be uniquely identified by with its own description history.

Each entity, represented in the model, is determined by such parameters as a set of

attributes, local rules and chains of supertypes. An attribute is a list of characteristics

describing the given entity. In its own turn an attribute may have several parameters,

such as an attribute name, a list of options (key, required, external, etc.), and relation-

ships types. Entities are also associated with entity rules, describing extended data

integrity restrictions defining the domain of possible values of attributes and relation-

ships.

In the Epicentre model, specification of entities has been expanded to include so

called reference entities. They differ from other entities because they have some

standard set of values predefined by POSC. Their presence of such entities is required

for compatibility with previous POSC specifications. There are three types of refer-

ence entities in the model:

 POSC Fixed entity has a fixed number of instances predefined by POSC;

 POSC Open entity also has fixed instances, but it's also possible to create addition-

al instances not predefined by POSC;

 Local entity has no fixed predefined instances, but it's possible to introduce user

defined instances.

All reference entities may have additional characteristics that allow to specify the

source and bibliography, that describe origin of information, contained in the in-

161

stance. To denote the reference entities and their types, the distinctive prefix Ref_ to

the entity names is used.

The object-oriented concept of class inheritance is also an important part of the Ep-

icentre model architecture. Since the data model contains really large volume of in-

formation, this concept provides an efficient way to organize all entities definitions

into a logically related structure.

Another fundamental part of Epicentre architecture comes from understanding that

many entities can be characterized by their spatial representation (such as geograph-

ical coordinates of oil well). Each of these geometric objects of activity can be con-

nected through some relations with one or more similar objects (such as the “to be

located on the territory” relationship).

The Epicentre data model is defined in terms of the EXPRESS language and uses

its basic concepts such as:

 Entity;

 Supertype and subtype;

 Attribute, explicit and inverse;

 User defined data type;

 Simple type;

 Aggregate type;

 Consistency constraint, or "where" rule;

 Uniqueness rule;

 Schema.

Thus, the Epicentre model entity description actually is a definition of a class, on

the basis of which class instances or objects can be created.

An entity may be a subtype of some supertype entity, inheriting its attributes, rules

and uniqueness constraints. In other words specification of supertype opens the way

to define type properties, common to all its subtypes.

A supertype may be abstract, which means that all instances must be specified.

Otherwise, its instances may be either specialized or not.

An attribute is a specific characteristic of an entity. To each attribute a name and a

representation type are assigned. It can be explicit, inverse, or derived from other

attributes.

Explicit attribute is an attribute that is not derived from any other attribute in the

model. Inverse attribute is used to express the opposite direction of a relationship

appeared in some explicit attribute specification.

A schema definition is a container that includes definitions of all entities, types,

and constraints visible in some particular EXPRESS language schema (Fig. 1).

Here attribute definitions are as follows:

 name stands for the schema identifier;

 types denotes a set of entities and specific types, declared in the schema;

 global_rules denotes a set of global constraints declared in the schema.

162

Fig. 1. EXPRESS language schema definition.

UNIQUE Url is a formal statement, expressing the "schema name must be unique"

constraint.

The uniqueness constraint points here to combination of key attributes whose val-

ues in the aggregate must uniquely identify a specific instance of the entity. Con-

sistency constraint in general defines condition imposed on attributes of all instances

of the entity.

3 OWL Structure

Web Ontology Language supports:

 formal definition of classes and their properties;

 definitions of individuals (class instances) and their properties;

 refining the definitions of classes and objects in logical terms.

OWL is largely compatible with the RDF [7] and RDF Schema [8] languages. The

XML [9] and RDF formats actually are part of the OWL standard.

The main structural units of an OWL ontology are classes, properties, objects (i.e.

class instances or individuals) and relationships between them.

The most fundamental concepts of the subject domain should correspond to the

classes, located at the root of various taxonomic trees. Each individual here is an in-

stance of the owl:Thing class. Thus, each user-defined class is automatically a sub-

class of the owl:Thing class. The root classes, specific to the given subject domain,

are defined simply by declaration of a named class. The fundamental taxonomic con-

structor is represented by the rdfs:subClassOf class; it defines the “to be a subclass”

class relation.

OWL properties allow to state some general facts about class members and specific

facts about individuals. In fact property here is a binary relation. There are two types

of properties:

 value-property is a relation between class instances and RDF literals or data types,

defined by XML Schema;

 object-property is a relation between instances of two classes.

163

There are many ways to specify such relationship. One can define the domain and

range. A property can be defined as the specialization (sub-property) of some already

existing property. Like classes, properties can be organized into a hierarchy.

More complex restrictions are also possible. OWL provides powerful mechanism

to express various characteristics of properties. Let's mention some traditional charac-

teristics of binary relations important to explain methodology of converting the Epi-

centre logical model into the OWL ontology description language.

Transitive property. Property P can be marked as transitive, if for any x, y and z

P (x, y) and P (y, z) implies P (x, z).

Symmetric property. Property P is marked as symmetric, if for any x and y P (x,

y) implies P (y, x).

Functional property. Property P is marked as functional, if for any x, y and z P (x,

y) and P (x, z) implies y = z.

Inverse property. If property P1 is marked as owl:inverseOf P2, then for all x and

y P1 (x, y) implies P2 (y, x).

Inverse functional property. Property P is marked as inverse functional, if for all

x, y and z: P (y, x) and P (z, x) implies y = z.

In addition to designating property characteristics, it is also possible in specific

contexts to limit explicitly the range of a property. This can be done by using the fol-

lowing property restrictions local to the class containing them.

allValuesFrom. This restriction requires, for each instance of a class with this

property, all property values to be instances of the class, specified in the

owl:allValuesFrom clause.

someValuesFrom. Similarly, this constraint requires, for each instance of a class

with this property, at least one property value to be a representative of the class speci-

fied in the owl:someValuesFrom clause.

Cardinality. The owl:cardinality parameter allows to specify the number of ele-

ments in the relationship. In OWL DL, in particular, owl:maxCardinality can be used

to set an upper limit, and owl:minCardinality can be used to set a lower limit. In com-

bination, they can be used to limit the cardinality of a property within some numerical

range. Fig. 2 shows an example of defining a single-valued relationship for the class

called Name_entity.

Fig. 2. Example of OWL cardinality definition.

164

4 Epicentre to OWL DL Conversion.

To construct the OWL ontology from the Epicentre data model the following main

approaches were used:

 each Epicentre model entity corresponds to a primary class of the OWL ontology;

all these classes are located at the root of the taxonomy tree; specific name prefix-

es, that allow to identify entity-properties and reference entities, are incorporated to

the class names;

 entities relation types (such as one-to-one, one-to-many and many-to-many) are

expressed by OWL definition of simple attribute properties, if the related entity is

not a data type, or by definition of value properties otherwise; indicating the type

of relation between classes is implemented using the OWL concept of cardinality.

OWL contains no structural elements to define explicitly the notion of uniqueness

of the Epicentre model. Therefore, a new predefined property, containing the list of

all the unique key attributes, has been added to the definition of each OWL class.

Similarly, the problem of expressing the Epicentre constraint conditions was solved

by constructing specific OWL classes for each Epicentre data category.

The formal LR (1) grammar [10] of the Epicentre model was created to serve the

base of automatic semantically equivalent transformation of the Epicentre model into

the OWL DL dialect syntax. The descriptive logic dialect was chosen to allow in per-

spective to complement the ontology with inference system engine. Complete Russi-

fication of descriptions of the Epicentre model entities and attributes, as well as all

corresponding OWL classes and properties was fulfilled.

The software implementation of the Epicentre to OWL DL converter was per-

formed in the Java programming language, using the flex lexical analyzer's generator

[11] and the CUP parser generator [12].

To verify semantic correctness by the subject domain professionals, the OakOwl-

Project 1.0 program visual interface, providing navigation and manipulation with the

OWL ontologies has also been developed.

The well-known open-source Java project Protégé [13] was chosen as a prototype

of the OakOwlProject environment implementation. In the process of development,

its functionality was essentially expanded. The final appearance of the OakOwlProject

interface, reflecting the capabilities of the system for working with ontologies is

shown in Fig. 3.

Syntactically, the Epicentre model is a sequence of entity descriptions in

EXPRESS language. To convert the model, it was necessary to translate the descrip-

tion of each entity from EXPRESS into OWL language. The syntactic structure of the

Epicentre model is shown in Fig. 4.

165

Fig. 3. General view of the OakOwlProject system user interface.

Fig. 4. EXPRESS entity descriptions.

The following notation is used here:

name_entity denotes the name of the entity; it may have the Pty_ or Ref_ prefix,

indicating respectively an property entity or reference entity;

name_entity1, ..., name_entityN is the list of the named entities;

name_attribute denotes the explicit attribute; it may also have the Ref_ prefix;

166

sub_name is the name of the parent entity, which can a regular entity (no prefix)

or a property entity (Pty_ prefix);

sub_name1, ..., sub_nameN denotes a list of named parent entities;

type_name is the name of the direct attribute type, it can be a reference entity

(identified by Ref_ prefix), a regular entity (which name with no prefix) or a named

data type (identified by Ndt_ prefix);

inverse_attribute_name is obviously the name of an inverse attribute; it may de-

note a regular entity (no prefix) or a property entity (there is a Pty_ prefix);

inverse_name_entity is the name of an entity, inversely related to this entity; it

may be a reference entity (marked by Ref_ prefix), a regular entity (no prefix) or a

property entity (marked by Pty_ prefix);

entity_inverse_type is the name of an entity, which is the type of direct attribute,

corresponding to the given inverse attribute; it may be a regular or reference entity;

name_attribute1, ..., name_attributeN denotes a list of attributes.

The meaning of capitalized keywords is described below.

Fig. 5 shows the way to convert Epicentre entities into OWL classes.

Fig. 5. Epicentre entities to OWL Classes conversion.

The base classes of the Epicentre model, such as E_AND_P_DATA,

FLUID_COMPONENT, FLUID_PHASE, GRID_ELEMENT_BEHAVIOR,

GRID_GEOMETRY_BEHAVIOR, PFNU, are converted to the subclasses of the

owl:Thing class, which are located in the root of the taxonomic tree. In the OakOwl-

Project_1.0 shell, the base classes are also located at the root of the hierarchy shown

in Fig. 6.

Fig. 6. Base classes of the data model.

Conversion of the inheritance relationship is shown in Fig. 7. Here, for the given

entity the parent entities are listed in the SUBTYPE OF construct. Such relation

uniquely corresponds to the OWL subclass construct.

167

Fig. 7. Inheritance relationship conversion.

Here definition of the entity name and its place in the Epicentre model hierarchy is

followed by a list of the entities attributes, both direct and inverse. The definition of a

direct attribute is shown in Fig. 8.

Fig. 8. Direct attribute definition.

Here, the OPTIONAL and SET [0:?] OF syntax constructs may be absent. If pre-

sent, the OPTIONAL keyword denotes the optionality of the attribute value and the

SET [0:?] OF construct determines the degree of connectivity (i.e. one-to-one, one-

to-many and many-to-many options) for the aggregate attribute. Such syntactic unit

corresponds to the OWL definition of simple attribute properties, if the related entity

is not a data type, and value properties otherwise. Hence, it can be represented in

OWL in the way shown in Fig.9.

Fig. 9. OWL definitions of attribute-properties and value-properties.

Here, the property name corresponds to the attribute name and the relation binds

the original entity and some class. Potential name collision is solved in traditional

way by introducing dot notation. For example, in the case of match of the property

name and the class name, the property name can be specified as ontolo-

gy_entity_name.attribute_name.

If an attribute has values of some specific data type, then, by sense, there should be

represented by a value property. But since the Epicentre data types have more com-

plex structure, we actually get the same object properties.

An indication of the degree of class relations, as well as OPTIONAL construct can

be implemented using the OWL concept of cardinality.

Here, OPTIONAL construct means that the degree of relationship may be equal to

0, so the corresponding property constraint can be added to the class description. For

example, the description of the well_test_open_period_recovery entity (see Fig. 10)

will be expressed as shown in Fig. 11. The OWL definition of the property itself is

shown in Fig. 12.

168

Fig. 10. Implementation of EXPRESS property constraint.

Fig. 11. Cardinality concept implementation.

Fig. 12. OWL property definition.

The following syntax construction corresponds to the inverse attribute definition

(Fig. 13):

Fig. 13. Inverse attribute definition.

There is no concept of an inverse attribute in the OWL language. This problem is

solved by adding the Type:InverseProperty property, indicating to the entity to which

169

the given attribute is inverse. For example, let an activity entity has an activity_alias

attribute, which is inverse to an aliased_object entity. A description of this attribute is

provided in Fig. 14

Fig. 14. OWL definition of inverse attribute.

The following syntactic construction corresponds to the definition of entity attrib-

utes uniqueness and WHERE-constraints (Fig. 15).

Fig. 15. OWL definition of entity attributes uniqueness and WHERE-constraints.

Here, UNIQUE keyword is followed by the list of unique attributes forming the

key of this entity.

The OWL language lacks structural elements to express Epicentre's notion of

uniqueness. Therefore, a new property called name_entity.UNIQUE has been added to

the definition of each OWL class to contain a list of all key attributes. Similarly, a

new property called name_entity.WHERE has been added to the definition of each

OWL class to contain constraint conditions.

All data types in the Epicentre model are classified into the following categories:

 Simple Data Types;

 Simple Pattern Types;

 Measured Quantity Types;

 Geometry Types.

To define these categories in terms of the OWL predefined data types, separate

classes have been added to the OWL ontology.

170

5 Conclusion

To define POSC's Epicentre 3.0 model syntax, a formal LR (1) grammar was con-

structed; it was used as the input file for the Java Cup parser generator. Based on this

grammar and the Epicentre model conversion scheme described above, an OWL on-

tology of the subject domain of natural-technical objects was constructed.

Not all Epicentre model constructs can be explicitly expressed in the OWL lan-

guage. To convert information adequately from the Epicentre model, special OWL

classes and reserved properties were defined.

The total volume of LR(1) grammar, together with the built-in implementation of

the conversion semantics, contains about 30 pages. The EXPRESS Epicentre model

file contains about 500 pages. The resulting OWL ontology definition has a volume of

about 3,500 pages. Thus the Epicentre model has been completely translated into

OWL ontology with no loss of information. Visualization of the constructed ontology

allows the subject domain experts to validate its correctness.

Semantic search web application for TATNEFT oil corporation based on the de-

scribed subject domain ontology, unified data ontology integrating various corpora-

tion heterogeneous relational databases and linguistic thesaurus of professional termi-

nology is described in [14–18].

The way of the corporation data integration essentially uses the methods of com-

puter linguistics to extract information from natural language texts contained in data-

bases comments. The corresponding knowledge extraction algorithm is described in

more detail in the above-mentioned works.

The core algorithm of the intellectual search system is the algorithm for construct-

ing SQL queries from the end user queries, written in professional dialect. Optimiza-

tion methods for implementing the most resource-intensive part of this algorithm,

associated with the need to enumerate table joins, are considered in [19].

Acknowledgments. This work was funded by the subsidy allocated to Kazan Fed-

eral University for the state assignment in the sphere of scientific activities, grant

agreement 1.2368.2019 and subsidy of the Russian Fund of Fundamental Research,

grant agreement 18-07-00964.

References

1. Gavrilova, T.A., Khoroshevskii, T.A.: Bazy znanii intellektualnykh system. SPb., Piter

(2001).

2. Date, C.J.: Vvedenie v sistemy baz dannykh. M., Izd. Dom Viliams (2001).

3. Epicentre v3.0, http://www.energistics.org/energistics-standards-directory/epicentre-

archive, last accessed 2019/12/09.

4. OWL Web Ontology Language, https://www.w3.org/TR/2004/REC-owl-features-

20040210, last accessed 2019/12/09.

5. Towards the Semantic Web: Ontology-Driven Knowledge Management. Chicester, UK,

John Wiley & Sons (2003).

6. The World Wide Web Consortium (W3C), http://www.w3c.org, last accessed 2019/12/09.

171

7. RDF 1.1 Concepts and Abstract Syntax, https://www.w3.org/TR/2014/REC-rdf11-

concepts-20140225, last accessed 2019/12/09.

8. RDF Schema 1.1, https://www.w3.org/TR/rdf-schema, last accessed 2019/12/09.

9. Extensible Markup Language (XML), https://www.w3.org/XML, last accessed

2019/12/09.

10. Lewis, P., Rosenkrantz, D., Stearns, R.: Teoreticheskie osnovy proektirovaniia kompiliato-

rov. M., Mir (1979).

11. Allmon, B.J., Anderson, J.: Flex on Java. Manning Publications Co. Greenwich, CT,

USA, ISBN: 1933988797 (2010).

12. CUP Parser Generator for Java, https://www.cs.princeton.edu/~appel/modern/java/CUP,

last accessed 2019/12/09.

13. Protégé, http://protege.stanford.edu, last accessed 2019/12/09.

14. Birialtsev, E., Bukharaev, N., Gusenkov A.: Intelligent search in Big Data. Journal of

Physics: Conference Series, vol. 913, conf. 1. Published online: 25 October 2017 (2017).

15. Gusenkov, A.M.: Intellektualnyi poisk slozhnykh obieektov v massivakh bolshikh

dannykh. Elektronnye biblioteki, vol. 19, book 1, pp. 3–39 (2016).

16. Gusenkov, A., Birialtsev, E., Zhibrik, O. Intellektualnyi poisk v strukturirovannykh mas-

sivakh informatsii. LAP LAMBERT Academic Publishing, Deutschland: OmniScriptum

Marceting DEU GmbH, ISBN 978-3-659-76919-1 (2015).

17. Gusenkov, A.M., Birialtsev, E.V.: Integratsiia reliatsionnykh baz dannykh na osnove on-

tologii. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Seriia Fiziko-

matematicheskie nauki, vol. 149, book. 2, pp. 13–34 (2007).

18. Gusenkov, А., Bukharaev, N., Birialtsev, E.: On ontology based data integration: problems

and solutions. Journal of Physics: Conference Series, vol. 1203, conf. 1, 012059 (2019),

https://iopscience.iop.org/article/10.1088/1742-6596/1203/1/012059/meta, last accessed

2019/12/09.

19. Gusenkov, A., Bukharaev, N.: On Semantic Search Algorithm Optimization. New

Knowledge in Information Systems and Technologies. WorldCIST'19. Advances in Intel-

ligent Systems and Computing, vol. 930. Springer, Cham (2019),

https://link.springer.com/chapter/10.1007/978-3-030-16181-1_45, last accessed

2019/12/09.

https://www.w3.org/XML/
https://link.springer.com/chapter/10.1007/978-3-030-16181-1_45#copyrightInformation

