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Abstract. It is proposed to add a static system of types to the dataflow func-

tional model of parallel computing and the dataflow functional parallel pro-

gramming language developed on its basis. The use of static typing increases 

the possibility of transforming dataflow functional parallel programs into pro-

grams running on modern parallel computing systems. Language constructions 

are proposed. Their syntax and semantics are described. It is noted that the need 

to use the single assignment principle in the formation of data storages of a par-

ticular type. The features of instrumental support of the proposed approach are 

considered. 
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1 Introduction 

Modern methods of developing parallel programs are highly dependent on the fea-

tures of architectures of parallel computing systems (PCS), which is reflected in pro-

gramming languages. Almost any changes in the architecture of the PCS lead to the 

rewriting and modification of the already developed and debugged code. An attempt 

to overcome this situation is the application of the concept of architecture-

independent parallel programming (AIPP), focused on the development of programs 

using language and tools designed for abstract (virtual) parallel systems with unlim-

ited computing resources and dataflow strategies for managing by calculations. Such 

approaches are developing in different directions. We can mention the COLAMO 

programming language developed for systems on a chip [1, 2]. The creation of uni-

versal languages that are not directly related to architectural restrictions can be traced 

on the example of the functional parallel programming languages Sisal [3] and Pifag-

or [4]. 

The most consistent concept of AIPP was reflected in the Pifagor programming 

language and it is directly taken into account in its model of dataflow functional par-

allel computing. The program model is described as a resource-unlimited acyclic 

unconditional graph in which control is carried out according to data availability. In 
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addition, it implements the principle of the single usage of computing resources [4]. 

At the model level, it is assumed that for carrying out any operations unique resources 

are allocated, the real distribution of which is carried out after the logical structure of 

the program is developed and debugged. To test the capabilities of the language, tools 

have been developed that support the process of creating, converting, and executing 

dataflow functional parallel programs [5]. 

However, the low efficiency of program execution should be noted, because of the 

use of an interpreter. This is due to the fact that the language uses dynamic typing of 

data, and the operators presented in the calculation model have dynamic behavior, 

allowing to create lists of arbitrary dimensions during calculations. In this regard, it is 

practically impossible to efficiently transform written programs into modern statically 

typed languages used in real parallel programming. 

At the same time, experiments conducted using the developed tools showed the 

possibility of effective application of this paradigm for optimization [6], formal veri-

fication [7], and debugging [8] of programs even before their transformation to a spe-

cific architecture begins. This allows to have a program, the transfer of which to real 

PCS could be carried out more formally by imposing resource constraints that take 

into account the specific architecture, while preserving the already fine-tuned general 

logic of functioning. 

In this regard, the modification of the dataflow functional model of parallel compu-

ting (DFMPC) is seen as promising and aimed at taking into account the features of 

data organization in modern programming languages, which would simplify the pro-

cess of transforming dataflow functional parallel (DFP) programs. Basically, this 

modification is associated with the use of static typing and fixing the dimensions of 

list and container data structures, which leads to a revision of a number of concepts of 

DFMPC. In accordance with these changes, the DFP programming language should 

also change. 

As a result of the research, a statically typed model of dataflow functional parallel 

computing (STMDFPC) was formed. Like the preceding DFMPC, it defines the pro-

gram as an information graph with data flow control. However, the operators describ-

ing the program algorithm are developed taking into account possible transformations 

into statically typed programming languages, which leads to a change in a number of 

axioms and transformation algebra. Based on the proposed model, a statically typed 

dataflow functional parallel programming language Smile is developed. 

2 Static Typing at the Operator Level 

As in the previous DFMoPC [4], the operators specify the nodes of the information 

graph in which the calculations are performed according to the readiness of the data. 

However, there are a number of features associated with changing requirements. We 

must provide support for the following properties specific to statically typed pro-

gramming languages: 

- efficient transformation of statically typed dataflow functional parallel pro-

grams into other computation models instead of their interpretation; 
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- control is increased through the use of strong typing; 

- to maintain the principle of dataflow control and the general concept of a data-

flow functional model of parallel computing; 

- each of the program-forming operators should rely on typed data controlled at 

the compilation stage; 

- container (list) data types must have a fixed size, determined either at compile 

time or at run time; 

- the language axiomatic should be simplified to reduce the number of dynamic 

checks and transformations at runtime; 

- simplification of the algebra of equivalent transformations. 

The above requirements lead to a change in almost all the DFMPC operators, as a 

result of which a calculation model with other properties is formed. These properties 

are determined through the features of the functioning of the program-forming opera-

tors of the STMDFPC. 

The interpretation operator describes the functional transformations of the argu-

ment. It has two inputs to which the function F and the argument X arrive through the 

information arcs. Both the argument and the function can be the results of previous 

calculations. The main features of the new version of this operator are: 

- types of arguments on operator inputs must be known at compile time; 

- the type of output result is also computed at compile time; 

- at the input and output of the operator, named data types, structures and tuples 

are allowed; 

- for named types, only named equivalence is allowed; 

- for tuples, structural equivalence is allowed; 

- all basic operations must been predeterminated and their possible data types of 

arguments and results are fixed at the language level. 

Based on this, signatures specifying the types of arguments and results are defined 

for the basic functions of the language. For user-defined functions, the types of argu-

ments and results are explicitly specified during function definitions. The dualism of 

some basic data is allowed, which, depending on the use in the interpretation operator, 

can act either as an argument or as a function. In this case, it is possible for them to 

define a double type made of data type and function signature 

The interpretation operator is launched when the data is ready, which is fixated by 

the appearance of markup on the input arcs. The result is set by marking the output 

arc. 

Instead of grouping into a list of data in STMDFPC, grouping in a tuple is used. 

The following main properties of this operator can be distinguished: 

- the size of the tuple is determined at compile time (due to the necessity to 

know the types of grouped data and their size); 

- tuple elements are data of named types; 

- comparison for structural equivalence with other tuples is provided; 

- the readiness of the tuple for execution is determined by the readiness of all its 

data; 
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- there are no internal equivalent transformations that change the size of the tu-

ple at runtime (the signal that is removed from the list in the DFMPC is a data 

type without a value and is stored explicitly). 

The axioms that determine the transformation of tuples during calculations are also 

changed, which is also due to the introduction of additional control during compila-

tion. 

Grouping in parallel lists is replaced by grouping in a swarm. It is used to combine 

data over which one large-scale operation is performed. Swarm properties include: 

- swarm size is determined at compile time; 

- swarm elements are data of one named type or all swarm elements are struc-

turally equivalent; 

- the readiness of the swarm for execution is determined by the readiness of at 

least one element (asynchrony in the processing of its individual elements); 

- there are no internal equivalent transformations that change the size of the 

swarm at run time; 

- inside the tuples, the swarm does not degenerate into a sequence of elements 

of the tuple, but is a single element; 

- the algebra of equivalent swarm transformations is implemented only at com-

pile time. 

The above characteristics make it possible to consider the swarm as a set of inde-

pendent data that is launched as they become available. A swarm consisting of ele-

ments of the same type is also formed at the output of the interpretation operator.  

The grouping in the delayed list is replaced by the delay of calculations operator, 

which differs from the delayed list grouping in a way that it returns only one value, 

the type of which is determined at compile time and can be anything.  In a language 

with dynamic typing, the result was a parallel list. In the new model, issuing a swarm 

instead of a parallel list is also possible, but only if explicitly specified as a result of 

the delay. Disclosure of the delay occurs immediately after it becomes an argument of 

the interpretation operator. This allows in some cases to use this operator as a bracket 

expression that changes the priority of operations. 

3 Static Data-Typing 

Unlike the DFP programming language Pifagor, in which only basic data types are 

represented, the programming language Smile has a developed type system, due to the 

need to increase control at the compilation stage. The added basic data types largely 

repeat the types used in modern statically typed languages. However, besides this, 

types are offered that provide the ability to manipulate parallel lists, which leads to 

their definite effect on STMDFPC. 

The following basic types are distinguished: integer, boolean, signal, functional, er-

rors. These types are fundamental and are used not only in the processing of arbitrary 

data, but also in key language operators. Additional types, such as real numbers, char-

acters, and others, are considered as extensions determined by the problem orienta-

tion, and can be included in various subject-oriented versions of the language. In gen-
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eral, it can be noted that issues related to the extension of the basic types are not criti-

cal at the level of the computational model. 

Composite types include: array, structure, tuple, generalization, swarm, stream, 

functional type, reference type. These types are used to form derived abstractions 

defined by the programmer, and consist of both base and derived types. They basical-

ly replace the previously used concepts of a data list and a parallel list. However, they 

are descriptions and not operators, that allows them to form the corresponding data 

stores which use a single assignment principle. Array, structure, and tuple are special-

ized varieties of the DFMPC data list. 

The array type is intended to describe data of the same type. In many ways, it is 

similar to using multidimensional arrays of traditional imperative programming lan-

guages. The array has fixed dimensions and lengths for each dimension. A description 

of this type at the programming language level is specified using the following syn-

tax: 

Array ::= TypeName «(» Dimension «)» 

Dimension ::= Integer { «,» Integer } 

Examples: 

A << type int(100) 

B << type bool(30, 40) 

The structural type provides a grouping of data of different types by analogy with 

the structural types of various programming languages. The structure consists of 

fields, each of which has a name and type. The structure description has the following 

syntax:  

Structure ::= «(» StructureField { «,» StructureField } «)» 

StructureField ::= FieldName «@» TypeName 

      | «[» FieldName { «,» FieldName } «]» «@» TypeName 

Examples: 

Triangle << type (a@int, b @ int, c @int) 

Rectangle << type ([x,y]@int) 

The tuple type differs from the structure in the absence of named fields. It is simi-

lar to an array, but may contain elements of various types. Access to the elements of 

the tuple is carried out by the field number. The following syntax is used to specify 

tuples: 

Tuple ::= «(» TypeName { «,» TypeName } «)» 

Examples: 

С << type (int) 

В << type (int, bool, signal) 

The generic type is in many respects similar in organization and use to the general-

izations used in imperative languages. Its main task is to describe variant data. There 

are various approaches to organizing generalizations, including methods that support 

polymorphism. The language uses generalizations that support the procedural para-

metric programming paradigm, which provides more flexible support for the evolu-

tionary expansion of programs compared to other approaches [9]. The rules that de-

fine the syntax of generalizations are as follows: 

Generalization ::= «{» GeneralizationField { «,» GeneralizationField } «}» 
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GeneralizationField ::= TypeName { «,» TypeName } 

  | TagName «@» TypeName 

  | «[» TagName { «,» TagName } «]» «@» TypeName 

Examples: 

Figure1 << type {Triangle, Rectangle} 

Figure2 << type {trian@Triangle,  

    rect@Rectangle,  

    rhomb@Rectangle} 

WeekDay << type{[Sun,Mon,Tue,Wen,Thu,Fri,Sat]@signal} 

The swarm type is used to describe independent data on which large-scale parallel 

operations are possible. All swarm elements are of the same type, and the function 

that processes them can be simultaneously performed on each element. The result is 

also a swarm whose dimension is equal to the dimension of the swarm of arguments. 

The syntax rules defining this type are as follows: 

Swarm ::= TypeName «[» Integer «]» 

Example: 

R << type int[100] 

The data stream type is an alternative to an asynchronous list [10]. It is used to 

process data arriving sequentially and asynchronously at arbitrary intervals. The di-

mension of the incoming data is unknown, therefore, the completion of processing is 

possible only by the sign of the end of the stream. A stream is ready for processing if 

it has at least one element. The type of all stream elements is the same. The syntax 

rules that define the data stream are: 

DataStream ::= TypeName «{» «}» 

Example: 

A << type int{} 

The functional type allows us to specify the signature of the function by defining 

the type name, the type of the argument, and also the type of the result. The definition 

of a functional type differs from other languages only in that any function has only 

one argument and returns only one result. Syntax rules defining a description of a 

functional type are: 

FunctionalType ::= func Argument «->» Result 

Argument ::= TypeName | Tuple 

Result ::= TypeName | Tuple 

Examples: 

F << type func int -> int 

F2 << type func (bool, int, int) -> (int, bool) 

The reference type provides support for pointers to various storages of a certain 

type, which allows us to transfer values between functions without copying them. Its 

main purpose is to provide additional type control during transfers. Syntax rules de-

fining a description of a reference type are: 

Reference ::= «&» TypeName 

OpenArray ::= TypeName «(» «*» { «,» «*» } «)» 



280 

 

4 Function Descriptions and Static Type System 

Unlike the Pifagor DFP programming language, an explicit specification of the argu-

ment and result types is used in function description, which provides additional con-

trol during compilation. These changes affect the function header, as defined by the 

following syntax description: 

Function ::= func Argument «->» Result FunctionBody 

Argument ::= ArgumentName «@» (TypeName | Tuple) | Structure 

Result ::= TypeName | Tuple | Structure 

Examples: 

Factorial << func n@int -> int {...}  

TrianPerimeter << func ([a,b,c]@int) -> int {...}  

Sum << func t@(int, int) -> int {t:+ >> return} 

5 Specifics of Instrumental Support 

Adding a static type system to the language leads to the modification of tools that 

support dataflow functional parallel programming [5]. The developed language pro-

vides parallelism representation at the level of elementary operations, in which each 

function describes only the informational graph of the algorithm without any control 

relationships. The translator converts the source text of the function into an intermedi-

ate representation, which is used to optimize existing dependencies according to vari-

ous criteria, as well as to build on its basis a control flow graph that defines the execu-

tion order in accordance with the chosen calculation management strategy [11]. 

Transformation of the control flow graph and its optimization make it possible to 

obtain strategies that differ from the dataflow control by data readiness and take into 

account various restrictions inherent to real computing systems. 

A general diagram showing the various uses of the proposed tools is shown in 

Fig. 1. Within the framework of the created environment, the following subsystems 

are distinguished: 

- a translator from the dataflow functional parallel programming language into 

an intermediate representation called a reverse data flow graph (RDFG); 

- control flow graph (CFG) generator, forming a graph for computing control; 

- an event machine that provides the execution of dataflow functional parallel 

programs in automatic and debugging modes, using RDFG and CFG as a pro-

gram; 

- optimization tools for a reverse data flow graph; 

- control flow graph optimization tools; 

- formal verification tools for DFP programs; 

- toolkit for converting DFP programs into programs for other PCS architec-

tures. 

The translator is focused on processing text files, each of which contains one of the 

language artifacts. For each function, a reverse data flow graph is generated in the 

computer's memory, which is stored in the function repository in text form. The rea-
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son for choosing a textual representation for describing the RDFG is because the for-

mation of an internal representation in the memory of a computer system on its basis 

can be easily performed using simple broadcasting programs. In addition, the devel-

oper can easily read and analyze the translated functions, considering this form as an 

analogue of the assembler language. Unlike the RDFG language with dynamic typing, 

this graph contains additional type information for each node. 

 

Fig. 1. The composition of the tools supporting dataflow functional parallel programming. 

 

The reversible data flow graph generated by the translator allows us to build a con-

trol flow graph that determines the execution of the function. A special utility is de-

signed for this, which generates a CFG that defines the management of RDFG verti-

ces by data readiness. CFG is stored in the text form. 

Testing and debugging of dataflow functional parallel programs at the current stage 

is carried out by a special interpreter (event machine), consisting of many event pro-

cessors (EP), controlled by the event machine manager. Each of these processors 

(Fig. 2) carries out processing of only one function, launched in a separate thread. The 

operations inside the function are currently being performed sequentially due to the 

change in the state of the vertices of the CFG, which initiate the calculations at the 

vertices of the RDFG. 

The functioning of the EP is as follows: the initial signals that record the flow of 

various events in the system and are determined by the initial marking of the CG are 

loaded into a queue from which they are transmitted to the processor in accordance 

with the service discipline. In the simplest case, this may be a FIFO discipline. The 

control signal processor analyzes the incoming event and selects the node of the con-

trol graph indicated in it. Based on the analysis of the state of the CG node, it can 
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refer to the top of the information graph associated with it for the code of the opera-

tion being performed. In the case when the data processing operation is to be per-

formed, a call is made to the RDFG node processor, which carries out the required 

functional transformations and saves the intermediate results. After processing the 

data, the control node switches to a new state and, if necessary, generates a signal 

transmitted to the next node, which enters the control signal queue. 

 

Fig. 2. The generalized structure of the event processor. 

The main optimization methods developed at the present time involve the conver-

sion of intermediate representations of dataflow functional parallel programs. They 

are aimed at changing the information and control graphs. The transformations are 

largely similar to the methods used to optimize the source code of programs and their 

intermediate representations in other programming languages, and are designed to 

solve similar problems. The specific of the dataflow functional model of parallel 

computing is own characteristics on the implementation of these methods. It is due to 

the algebra of equivalent transformations of the model implemented in the language: 

the information and control graphs can be changed independently of each other. In the 

course of optimization, it is necessary to ensure the consistency of RDFG and CFG, 

however, for many tasks, RDFG processing is sufficient. In such cases, the optimiza-

tion of the control graph should be carried out after the transformation of the infor-

mation graph and the construction of a new CG on its basis. It should be noted that 

the utilities currently being developed do not affect the distribution of real computing 

resources. 
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The presence of only information dependencies in the program and the absence of 

resource constraints make it easier for formal verification. The main tasks in this area 

of work are: study of the specifics of the application of formal methods of correctness 

proof and development of tools to simplify verification. The emphasis is on proving 

the correctness of the program using deductive analysis based on the Hoar calculus 

[12]. The Hoar triple is represented as an information graph of the program, to the 

input and output arcs of which formulas in the specification language (precondition 

and postcondition) are attached. The process of proving the correctness of the pro-

gram consists in marking the arcs of the information graph with formulas in the lan-

guage of specification, modification of the graph and its convolution. The result is 

several information graphs in which all arcs are marked. Each of the fully labeled 

graphs can be transformed into a formula in the language of logic. The identical truth 

of all the obtained formulas testifies to the correctness of the program. The methods 

developed for the Pifagor language [13] are also applicable to a language with static 

typing. 

The proofing process is quite time-consuming, since it requires consideration of a 

large number of different versions of graphs and transformations. Therefore, the basic 

concepts of the architecture of a tool for supporting formal verification of programs in 

the DFP programming language have been developed [14]. The system receives at the 

input the information graph of the program and the precondition and postcondition 

formulas in the specification language. It finds unmarked arcs of the graph and helps 

with the selection of axioms and theorems necessary for their marking. The whole 

process of proof is presented in the form of a tree, each node of which is a partially 

labeled graph. The tree is completed when all its leaves contain fully marked up in-

formational graphs of the program. After that, for each graph from the sheet, a formu-

la is generated in the language of logic. If all formulas are identically true, then the 

program is correct. 

6 Conclusion 

The presence of static typing in the language of dataflow functional parallel pro-

gramming provides more strict data control, which increases the reliability of devel-

oped programs. It also increases the possibility of more complete optimization and 

formal verification. In addition, the transformation of dataflow functional parallel 

programs into traditional parallel programming languages becomes easier and more 

effective, since most data types use almost single-valued mapping. 

The reported study was funded by RFBR according to the research project 

No. 17-07-00288. 
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